ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-07-18
    Beschreibung: Within the NASA Intelligent Systems Program, the Intelligent Data Understanding (IDU) element develops techniques for transforming data into scientific understanding. Automating such tools is critical for space science, space-based earth science, and planetary exploration with onboard scientific data analysis. Intelligent data understanding (IDU) is about extracting meaning from large, diverse science and engineering databases, via autonomous techniques that transform very large datasets into understanding. The earth science community in particular needs new tools for analyzing multi-formatted and geographically distributed datasets and for identifying cause-effect relationships in the complex data. Research within the IDU program element seeks to automate data analysis tasks so that humans can focus on creative hypothesis generation and knowledge synthesis. It may also enable NASA space missions in which autonomous agents must generate knowledge and take actions, and missions where limited bandwidth permits transmission of only the most interesting scientific observations, summaries, and conclusions. Twenty-seven research projects are-currently funded.
    Schlagwort(e): Cybernetics, Artificial Intelligence and Robotics
    Materialart: European Union Satellite Centre (EUSC); Dec 04, 2002 - Dec 07, 2002; Rome; Italy
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: The melting of sea ice is correlated to increases in sea surface temperature and associated climatic changes. Therefore, it is important to investigate how rapidly sea ice floes melt. For this purpose, a new Tempo Seg method for multi temporal segmentation of multi year ice floes is proposed. The microwave radiometer is used to track the position of an ice floe. Then,a time series of MODIS images are created with the ice floe in the image center. A Tempo Seg method is performed to segment these images into two regions: Floe and Background.First, morphological feature extraction is applied. Then, the central image pixel is marked as Floe, and shape-constrained best merge region growing is performed. The resulting tworegionmap is post-filtered by applying morphological operators.We have successfully tested our method on a set of MODIS images and estimated the area of a sea ice floe as afunction of time.
    Schlagwort(e): Earth Resources and Remote Sensing; Geosciences (General)
    Materialart: GSFC-E-DAA-TN10641 , Geoscience and Remote Sensing Symposium; Jul 22, 2012 - Jul 27, 2012; Munich; Germany|Geoscience and Remote Sensing Symposium Proceedings; 4958-4961
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-18
    Beschreibung: A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic region growing.
    Schlagwort(e): Cybernetics, Artificial Intelligence and Robotics
    Materialart: X Spanish Conference on Remote Sensing; Sep 17, 2003 - Sep 19, 2003; Caceres; Spain
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: We are developing an approach for generating ground reference data in support of a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. Since sufficient ground reference data for training and validation is not available from ground surveys, we are developing an interactive tool, called HSegLearn, to facilitate the photo-interpretation of 1 to 2 m spatial resolution imagery data, which we will use to generate the needed ground reference data at 30m. Through the submission of selected region objects and positive or negative examples of impervious surfaces, HSegLearn enables an analyst to automatically select groups of spectrally similar objects from a hierarchical set of image segmentations produced by the HSeg image segmentation program at an appropriate level of segmentation detail, and label these region objects as either impervious or nonimpervious.
    Schlagwort(e): Earth Resources and Remote Sensing; Geosciences (General)
    Materialart: GSFC-E-DAA-TN9678 , IEEE International Geoscience and Remote Sensing Symposium; Jul 22, 2012 - Jul 27, 2012; Munich, Germany; Germany
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-15
    Beschreibung: The Hierarchical Segmentation (HSEG) algorithm is an approach for producing high quality, hierarchically related image segmentations. The VisiMine image information mining system utilizes clustering and segmentation algorithms for reducing visual information in multispectral images to a manageable size. The project discussed herein seeks to enhance the VisiMine system through incorporating hierarchical segmentations from HSEG into the VisiMine system.
    Schlagwort(e): Cybernetics, Artificial Intelligence and Robotics
    Materialart: 2002 International Geoscience and Remote Sensing Symposium; Jun 24, 2002 - Jun 28, 2002; Toronto; Canada
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...