ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cybernetics, Artificial Intelligence and Robotics  (1)
  • Dissolved gas  (1)
  • Ocean sensor  (1)
  • 1
    Publikationsdatum: 2019-08-26
    Beschreibung: A system for automated rendezvous, docking, and capture of autonomous underwater vehicles at the conclusion of a mission comprising of comprised of a docking rod having lighted, pulsating (in both frequency and light intensity) series of LED light strips thereon, with the LEDs at a known spacing, and the autonomous underwater vehicle specially designed to detect and capture the docking rod and then be lifted structurally by a spherical end strop about which the vehicle can be pivoted and hoisted up (e.g., onto a ship). The method of recovery allows for very routine and reliable automated recovery of an unmanned underwater asset.
    Schlagwort(e): Cybernetics, Artificial Intelligence and Robotics
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-03-08
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Grabb, K., Pardis, W., Kapit, J., Wankel, S., Hayden, E., & Hansel, C. Design optimization of a submersible chemiluminescent sensor (DISCO) for improved quantification of reactive oxygen species (ROS) in surface waters. Sensors, 22(17), (2022): 6683, https://doi.org/10.3390/s22176683.
    Beschreibung: Reactive oxygen species (ROS) are key drivers of biogeochemical cycling while also exhibiting both positive and negative effects on marine ecosystem health. However, quantification of the ROS superoxide (O2−) within environmental systems is hindered by its short half-life. Recently, the development of the diver-operated submersible chemiluminescent sensor (DISCO), a submersible, handheld instrument, enabled in situ superoxide measurements in real time within shallow coral reef ecosystems. Here, we present a redesigned and improved instrument, DISCO II. Similar to the previous DISCO, DISCO II is a self-contained, submersible sensor, deployable to 30 m depth and capable of measuring reactive intermediate species in real time. DISCO II is smaller, lighter, lower cost, and more robust than its predecessor. Laboratory validation of DISCO II demonstrated an average limit of detection in natural seawater of 133.1 pM and a percent variance of 0.7%, with stable photo multiplier tube (PMT) counts, internal temperature, and flow rates. DISCO II can also be optimized for diverse environmental conditions by adjustment of the PMT supply voltage and integration time. Field tests showed no drift in the data with a percent variance of 3.0%. Wand tip adaptations allow for in situ calibrations and decay rates of superoxide using a chemical source of superoxide (SOTS-1). Overall, DISCO II is a versatile, user-friendly sensor that enables measurements in diverse environments, thereby improving our understanding of the cycling of reactive intermediates, such as ROS, across various marine ecosystems.
    Beschreibung: The development and verification of DISCO was funded by Schmidt Marine Technology Partners (G-2010-59878 to C.M.H., S.D.W. and J.K.). This research was further supported, in part, by grants from NSF GRFP (2016230168 to K.C.G.), WHOI Ocean Ventures Fund (2020 and 2021 to K.C.G.), and the MIT Wellington and Irene Loh Fund Fellowship (4000111995 to K.C.G.).
    Schlagwort(e): Reactive oxygen species ; Superoxide ; Chemiluminescent ; In situ analysis ; Ocean sensor ; Corals
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-10-21
    Beschreibung: We have developed a hollow core fiber optic sensor capable of measuring dissolved methane gas in liquids using only nanoliters of sample gas. The sensor is based on an anti-resonant hollow core fiber combined with a permeable capillary membrane inlet which extracts gas from the liquid for analysis.
    Beschreibung: Woods Hole Oceanographic Institution Innovative Technology Award Schmidt Marine Technology Partners G-2004-59353 NOAA Office of Ocean Exploration and ResearchNA18OAR0110354
    Schlagwort(e): Methane ; Dissolved gas ; Hollow core fiber
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...