ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cybernetics, Artificial Intelligence and Robotics; Engineering (General)  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: This paper presents the design and control of the 3-DOF compliant perching arm for the free-flying Astrobee robots that will operate inside the International Space Station (ISS). The robots are intended to serve as a flexible platform for future guest scientists to use for zero-gravity robotics research - thus, the arm is designed to support manipulation research. It provides a 1-DOF underactuated tendon-driven gripper capable of enveloping a range of objects of different shapes and sizes. Co-located RGB camera and LIDAR sensors provide perception. The Astrobee robots will be capable of grasping each other in flight, to simulate orbital capture scenarios. The arm's end-effector module is swappable on-orbit, allowing guest scientists to add upgraded grippers, or even additional arm degrees of freedom. The design of the arm balances research capabilities with Astrobee's operational need to perch on ISS handrails to reduce power consumption. Basic arm functioning and grip strength were evaluated using an integrated Astrobee prototype riding on a low-friction air bearing.
    Keywords: Cybernetics, Artificial Intelligence and Robotics; Engineering (General)
    Type: ARC-E-DAA-TN46498 , IEEE International Conference on Advanced Intelligent Mechatronics; Jul 03, 2017 - Jul 07, 2017; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...