ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-17
    Description: How living systems detect the presence of genotoxic damage embedded in a million-fold excess of undamaged DNA is an unresolved question in biology. Here we have captured and structurally elucidated a base-excision DNA repair enzyme, MutM, at the stage of initial encounter with a damaged nucleobase, 8-oxoguanine (oxoG), nested within a DNA duplex. Three structures of intrahelical oxoG-encounter complexes are compared with sequence-matched structures containing a normal G base in place of an oxoG lesion. Although the protein-DNA interfaces in the matched complexes differ by only two atoms-those that distinguish oxoG from G-their pronounced structural differences indicate that MutM can detect a lesion in DNA even at the earliest stages of encounter. All-atom computer simulations show the pathway by which encounter of the enzyme with the lesion causes extrusion from the DNA duplex, and they elucidate the critical free energy difference between oxoG and G along the extrusion pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951314/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951314/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qi, Yan -- Spong, Marie C -- Nam, Kwangho -- Banerjee, Anirban -- Jiralerspong, Sao -- Karplus, Martin -- Verdine, Gregory L -- CA100742/CA/NCI NIH HHS/ -- GM030804/GM/NIGMS NIH HHS/ -- GM044853/GM/NIGMS NIH HHS/ -- GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-100006/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA100742/CA/NCI NIH HHS/ -- R01 CA100742-06A1/CA/NCI NIH HHS/ -- R01 GM044853/GM/NIGMS NIH HHS/ -- R01 GM044853-18/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Dec 10;462(7274):762-6. doi: 10.1038/nature08561.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Biophysics, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010681" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Computer Simulation ; Crystallography, X-Ray ; *DNA Damage ; *DNA Repair ; DNA-Formamidopyrimidine Glycosylase/genetics/*metabolism ; Genome, Bacterial/genetics ; Geobacillus stearothermophilus/*enzymology/genetics ; Guanine/*analogs & derivatives/metabolism ; Models, Biological ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation/genetics ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-25
    Description: DNA glycosylases must interrogate millions of base pairs of undamaged DNA in order to locate and then excise one damaged nucleobase. The nature of this search process remains poorly understood. Here we report the use of disulfide cross-linking (DXL) technology to obtain structures of a bacterial DNA glycosylase, MutM, interrogating undamaged DNA. These structures, solved to 2.0 angstrom resolution, reveal the nature of the search process: The protein inserts a probe residue into the helical stack and severely buckles the target base pair, which remains intrahelical. MutM therefore actively interrogates the intact DNA helix while searching for damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Anirban -- Santos, Webster L -- Verdine, Gregory L -- F32 GM067380/GM/NIGMS NIH HHS/ -- GM044853/GM/NIGMS NIH HHS/ -- R01 CA100742/CA/NCI NIH HHS/ -- R01 GM044853/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1153-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497933" target="_blank"〉PubMed〈/a〉
    Keywords: *Base Pairing ; Binding Sites ; Cross-Linking Reagents ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; *DNA Damage ; DNA Glycosylases/*chemistry/*metabolism ; Geobacillus stearothermophilus/*enzymology ; Guanine/*analogs & derivatives/analysis/metabolism ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...