ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Space science reviews 72 (1995), S. 309-314 
    ISSN: 1572-9672
    Schlagwort(e): Heliosphere ; Energetic particles ; Corotating high-speed streams
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract As Ulysses moved inward and southward from mid-1992 to early 1994 we noticed the occasional occurrence of “inter-events”, lasting about 10 days and falling between the recurrent events, observed at proton energies of 0.48–97 MeV, associated with Corotating Interaction Regions (CIR). These inter-events were present for several sequences of two or more solar rotations at intensity levels around 1% of those of the neighbouring main events. When we compared the Ulysses events with those measured on IMP-8 at 1 AU we saw that the inter-events appeared at Ulysses after the extended emission (〉10 days) of large fluxes of solar protons of the same energy that lasted at least one solar rotation at 1 AU. The inter-events fell completely within the rarefaction regions (dv/dt〈0) of the recurrent solar wind streams. The interplanetary magnetic field (IMF) lines in the rarefactions map back to the narrow range of longitudes at the Sun which mark the eastern edge of the source region of the high speed stream. Thus the inter-events are propagating at mid-latitudes to Ulysses along field lines free from stream-stream interactions. They are seen in the 0.39–1.28 MeV/nucleon He, which exhibit a faster decay, but almost never in the 38–53 keV electrons. We show that the inter-events are unlikely to be accelerated by reverse shocks associated with the CIRs and that they are more likely to be accelerated by sequences of solar events and transported along the IMF in the rarefactions of the solar wind streams.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.
    Schlagwort(e): Solar Physics
    Materialart: GSFC.CPR.4541.2011 , 32nd International Cosmic Ray Conference (ICRC2011); Aug 11, 2011 - Aug 18, 2011; Beijing; China
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-10
    Beschreibung: Plasma and particle observations on Ulysses during its passes through the southern and northern heliosphere have revealed that, inside the streamer belt, the large-scale structure of the quiet global heliosphere is dominated by corotating interaction regions (CIRs). Therefore, considerable attention is now being given to the internal plasma structure of CIRs, and in particular, to the manifestations of the stream interfaces that should mark their origins as interactions between low speed solar wind (in the low-latitude streamer belt) and high speed solar wind (from the equatorial extensions of the high latitude polar coronal holes). The SWICS and HI-SCALE experiments on Ulysses combine plasma and energetic particle measurements that are of considerable utility for such studies because, between them, they cover the proton energy range from 10 eV to 5 MeV. These measurements are used, together with magnetic field data, to study the remarkable series of CIRs that occurred during the period beginning July 1992 and the end of 1993 as Ulysses rose from the ecliptic to a southern heliographic latitude of 48 deg. The structure of the regions between the forward and reverse shocks were previously analyzed in terms of the proton specific entropy argument log that should exhibit a discontinuous jump at the stream interface. It was claimed that the stream interface, defined with respect to specific entropy, is also associated with a discontinuity in energetic proton intensities. The energetic particle data (greater than 60 keV) and how they were ordered with respect to interfaces and with respect to the magnetic field were examined.
    Schlagwort(e): Solar Physics
    Materialart: Proceedings of the 31st ESALB Symposium on Correlated Phenomena at the Sun, in the Heliosphere and in Geospace; 59-68; ESA-SP-415
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...