ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Azurin ; Cupredoxin ; Copper-cysteinate protein ; Resonance Raman spectroscopy ; Vibrational assignments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  In the redox center of azurin, the Cu(II) is strongly coordinated to one thiolate S from Cys 112 and two imidazole Ns from His 46 and 117. This site yields a complex resonance Raman (RR) spectrum with 〉20 vibrational modes between 200 and 1500 cm–1. We have investigated the effects of ligand-selective isotope replacements on the RR spectrum of Pseudomonas aeruginosa azurin to determine the relative spectral contribution from each of the copper ligands. Growth on 34S-sulfate labels the cysteine ligand and allows the identification of a cluster of bands with Cu–S(Cys) stretching character between 370 and 430 cm–1 whose frequencies are consistent with the trigonal or distorted tetrahedral coordination in type 1 sites. In type 2 copper-cysteinate sites, the lower ν (Cu–S) frequencies between 260 and 320 cm–1 are consistent with square-planar coordination. Addition of exogenous 15N-labeled imidazole or histidine to the His117Gly mutant generates type 1 or type 2 sites, respectively. Because neither the above nor the His46Gly mutant reconstituted with 15N-imidazole exhibits significant isotope dependence, the histidine ligands can be ruled out as important contributors to the RR spectrum. Instead, a variety of evidence, including extensive isotope shifts upon global substitution with 15N, suggests that the multiple RR modes of azurin are due principally to vibrations of the cysteine ligand. These are resonance-enhanced through kinematic coupling with the Cu–S stretch in the ground state or through an excited-state A-term mechanism involving a Cu-cysteinate chromophore that extends into the peptide backbone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5001
    Keywords: Copper proteins ; Type 1 copper site ; Azurin ; Electron transfer ; Paramagnetic relaxation ; Spectroscopic probe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The relaxation enhancement caused by paramagnetic copper(II) is used to observe selectivelythe metal site of copper(I)-amicyanin by one- and two-dimensional NMR spectroscopy. Theparamagnetic effect is communicated to the diamagnetic protein through the electron self-exchange reaction in partially oxidised samples, and can be used for the selective detectionof protons around the metal. Relaxation-selective NMR pulse sequences, like super-WEFTand WEFT-NOESY, are used to achieve the desired selection of the signals. The spectraobtained show well-resolved signals corresponding to protons within a radius of∼7 Å from the metal, including almost all protons from the coordinated residues. A significant increasein resolution as well as selection of the most relevant part of the protein (close to the activecentre) are the principal advantages of this technique, which can be used to obtain specificinformation about the metal site in blue copper proteins, to assist in the assignment of theirNMR spectra and to determine functional properties like the electron self-exchange rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...