ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Sie haben 0 gespeicherte Treffer.
Markieren Sie die Treffer und klicken Sie auf "Zur Merkliste hinzufügen", um sie in dieser Liste zu speichern.
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Mediterranean Sea  (3)
  • Copernicus Marine Environment Monitoring Service  (1)
  • Mediterranean Sea analysis data set of sea state  (1)
  • 1
    Publikationsdatum: 2021-01-14
    Beschreibung: The Mediterranean and Black Sea operational forecasting systems are developed and continuously improved in the context of the Copernicus Marine Environment and Monitoring Service (CMEMS). The two systems operationally produce analyses and 10-days forecasts of the main physical parameters (Temperature, Salinity, Sea Level, Currents, Mixed Layer Depth) with a resolution of about 4.5km in the horizontal over 141 vertical levels in the Mediterranean Sea, and about 3km in the horizontal over 31 vertical levels in the Black Sea. The hydrodynamic numerical solutions are based on the NEMO (Nucleus for European Modelling of the Ocean) model coupled to a 3D variational data assimilation method (3DVAR) able to assimilate in-situ temperature and salinity profiles, satellite along-track sea level anomaly and sea surface temperature (in the Mediterranean Sea a nudging to satellite SST-L4 dataset is provided). The Mediterranean system is also 2-way online coupled with the WW3 (WaveWatch3) wave model to better represent the surface drag coefficient. The two systems are forced by 1/8o degree ECMWF (European Centre for Medium-range Weather Forecasts) atmospheric fields. The systems are validated in near real time and the quality of the products is monitored through regional websites (http://medfs.cmcc.it/ and http://bsfs.cmcc.it/) showing the analysis and forecast field maps at different depths (in case of 3D variables) as well as a weekly validation of model analysis compared with available observations. The focus of this work is to present the latest modelling system upgrades and the related improvements achieved by showing the model skill assessment including comparison with in-situ and satellite observational datasets.
    Beschreibung: Unpublished
    Beschreibung: San Diego, CA, USA
    Beschreibung: 4A. Oceanografia e clima
    Schlagwort(e): CMEMS ; Mediterranean Sea
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-02-13
    Beschreibung: INGV
    Beschreibung: Published
    Beschreibung: 4A. Oceanografia e clima
    Schlagwort(e): Copernicus Med-MFC circulation forecast ; Mediterranean Sea analysis data set of sea state
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: web product
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-03-01
    Beschreibung: The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that operationally produces analyses, reanalyses and short-term forecasts of the main physical parameters for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. This work is specifically focused on the description and evaluation of the analysis and forecast modeling system that covers the analysis of the current situation and produces daily updates of the following 10 days forecast. The system has been recently upgraded in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS) by increasing the grid resolution from 1/16o to 1/24o in the horizontal and from 72 to 141 vertical levels, by increasing the number of fresh water river inputs and by updating the data assimilation scheme. The model has a non-linear explicit free surface and it is forced by surface pressure, interactive heat, momentum and water fluxes at the air-sea interface. In order to validate the modeling system and to estimate the accuracy of the model products, a quality assessment is regularly performed including both pre-operational qualification and near real time (NRT) validation procedures. Pre-operational qualification activities focus on testing the improvements of the quality of the new system with respect to the previous version and relies on past simulation and historical data, while NRT validation activities aim at routinely and on-line providing the skill assessment of the model analysis and forecasts and relies on the NRT available observations. The focus of this work is to present the new operational modeling system and the skill assessment including comparison with independent (insitu coastal moorings) and quasi-independent (insitu vertical profiles and satellite) datasets.
    Beschreibung: Published
    Beschreibung: Bergen, Norway
    Beschreibung: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Schlagwort(e): Mediterranean Sea ; Hydrodynamics ; Numerical Model ; Skill Assessment
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-01-31
    Beschreibung: This study describes a new model implementation for the Mediterranean Sea that has been achieved in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS). The numerical ocean prediction system, that operationally produces analyses and forecasts of the main physical parameters for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas, has been upgraded by increasing the grid resolution from 1/16o to 1/24o in the horizontal and from 72 to 141 unevenly spaced vertical levels, by increasing the number of fresh water river inputs and by updating the data assimilation scheme. The model has a non-linear explicit free surface and it is forced by surface pressure, interactive heat, momentum and water fluxes at the airsea interface. The focus of this work is to present the new modelling system which will become operational in the near future and the validation assessment including the comparison with an independent non assimilated dataset (coastal moorings) and quasi-independent (in situ vertical profiles and satellite) datasets. The results show that the higher resolution model is capable of representing most of the variability of the general circulation in the Mediterranean Sea, however some improvements need to be implemented in order to enhance the model ability in reproducing specific hydrodynamic features particularly the Sea Level Anomaly.
    Beschreibung: Published
    Beschreibung: Bergen, Norway
    Beschreibung: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Schlagwort(e): Mediterranean Sea ; Hydrodynamics, ; Numerical Model ; Skill Assessment
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Conference paper
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-09-03
    Beschreibung: The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission. Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the pre-operational system developed during the MyOcean projects, consolidating the understanding of regional Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection networks and guaranteeing an efficient link with other Centers in Copernicus network. The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature, salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in 2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages the service delivery. The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components, guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products. The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily precipitation; reanalysis time-series have been increased by one year. Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface). Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.
    Beschreibung: Published
    Beschreibung: Vienna
    Beschreibung: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Schlagwort(e): Mediterranean monitoring and forecasting operational system ; Copernicus Marine Environment Monitoring Service
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...