ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • METEOROLOGY AND CLIMATOLOGY  (3)
  • Convective boundary layer  (1)
  • Mixed layer  (1)
  • surface fluxes  (1)
  • 1
    ISSN: 1573-1472
    Keywords: Baroclinic boundary layers ; Boundary-layer wind profiles ; Convective boundary layer ; Entrainment ; Mixed layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A comprehensive planetary boundary-layer (PBL) and synoptic data set is used to isolate the mechanisms that determine the vertical shear of the horizontal wind in the convective mixed layer. To do this, we compare a fair-weather convective PBL with no vertical shear through the mixed layer (10 March 1992), with a day with substantial vertical shear in the north-south wind component (27 February). The approach involves evaluating the terms of the budget equations for the two components of the vertical shear of the horizontal wind; namely: the time-rate-of-change or time-tendency term, differential advection, the Coriolis terms (a thermal wind term and a shear term), and the second derivative of the vertical transport of horizontal momentum with respect to height (turbulent-transport term). The data, gathered during the 1992 STorm-scale Operational and Research Meteorology (STORM) Fronts Experiments Systems Test (FEST) field experiment, are from gust-probe aircraft horizontal legs and soundings, 915-MHz wind profilers, a 5-cm Doppler radar, radiosondes, and surface Portable Automated Mesonet (PAM) stations in a roughly 50 × 50 km boundary-layer array in north-eastern Kansas, nested in a mesoscale-to-synoptic array of radiosondes and surface data. We present evidence that the shear on 27 February is related to the rapid growth of the convective boundary layer. Computing the shear budget over a fixed depth (the final depth of the mixed layer), we find that the time-tendency term dominates, reflecting entrainment of high-shear air from above the boundary layer. We suggest that shear within the mixed layer occurs when the time-tendency term is sufficiently large that the shear-reduction terms – namely the turbulent-transport term and differential advection terms – cannot compensate. In contrast, the tendency term is small for the slowly-growing PBL of 10 March, resulting in a balance between the Coriolis terms and the turbulent-transport term. Thus, the thermal wind appears to influence mixed-layer shear only indirectly, through its role in determining the entrained shear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 5 (1987), S. 301-309 
    ISSN: 1573-0662
    Keywords: Nitrogen oxides ; surface layer ; eddy flux ; surface fluxes ; turbulence exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The chemical reactivity of NO and NO2 is so rapid that their fluxes and concentrations can be considerably modified from that expected for conserved variables in the atmospheric surface layer, even as low as a meter above the surface. Fitzjarrald and Lenschow (1983) have calculated flux and mean concentration profiles for NO, NO2 and O3 in the surface layer using numerical techniques. However, their solutions do not approach the photostationary state at large heights. Here we solve a simpler set of equations analytically (i.e. we assume a constant O3 concentration and neutral hydrodynamic stability), and are able to show how the flux profiles behave at large heights assuming that the concentrations approach their photostationary values. We find, for example, that at large heights the ratio of the flux of NO to that of NO2 is equal to the ratio of their concentrations. These results are relevant to estimating surface fluxes of NO and NO2, and are most applicable to nonurban environments where NO and NO2 concentrations are usually much less than O3 concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: In situ airborne measurements of turbulent heat, moisture, momentum, ozone, and carbon monoxide fluxes in a convective boundary layer were obtained over a tropical rain forest between 1100 and 1630 LT on May 4, 1987. The aircraft flight path was chosen so as to fly over the tower site at the Ducke Forest Reserve near Manaus, Amazonas, Brazil. Both turbulence statistics and mean quantities were used to study the budgets of heat, water vapor, ozone, and carbon monoxide. The ozone budget study shows an accumulation rate in the boundary layer of 0.3 + or - 0.2 ppbv/h. The surface resistance to ozone during this flight was determined to be 0.06 + or - 0.03 s/cm, while the aerodynamic resistance was 0.14-0.17 s/cm. Results from the CO budget analysis show a midday accumulation rate of 0.6 + or - 0.3 ppbv/h in the Amazonian boundary layer. The evidence suggests production of CO in the PBL. A source of CO may exist below the lowest flight level (about 150 m), although it was not possible to determine what part of the flux at flight level was due to chemical production and what part may be due to surface emission.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 16875-16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: A major goal of research on marine stratocumulus is to try to understand the processes that generate and dissipate them. One approach to studying this problem is to investigate the boundary layer structure in the vicinity of a transition from a cloudy to a cloud-free region to document the differences in structure on each side of the transition. Since stratiform clouds have a major impact on the radiation divergence in the boundary layer, the transition from a cloudy to a clear boundary layer is a region of large horizontal inhomogeneity in air temperature and turbulence intensity. This leads to a considerable difference in horizontal and vertical transports between the cloudy and cloud-free regions. Measurements are used from the NCAR Electra aircraft during flights 5 (7 July 1987) and 10 (18 July 1987) of FIRE for this purpose. Flight 5 coincided with a LANDSAT overflight, and was designed to investigate the transition across a well-defined N-S cloud boundary, since the LANDSAT image can document the cloud cover in considerable detail. Turbulence legs were flown about 60 km on both sides of the cloud boundary. Flight 10 was flown at night in an area of scattered small cumuli and broken cloud patches.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA, Langley Research Center, FIRE Science Results 1989; p 213-217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: The National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS) used in the 1987 First ISCCP Regional Experiment (FIRE) off the coast of California is a 10.6 microns wavelength carbon dioxide lidar system constructed by Ron Schwiesow and co-workers at NCAR. The lidar is particularly well suited for detailed observations of cloud shapes; i.e., height of cloud top (when flying above cloud and looking down) and cloud base (when flying below cloud and looking up) along the flight path. A brief summary of the lidar design characteristics is given. The lidar height resolution of plus or minus 3 m allows for the distance between the aircraft and cloud edge to be determined with this accuracy; however, the duration of the emitted pulse is approximately 3 microseconds, which corresponds to a 500 m pulse length. Therefore, variations in backscatter intensities within the clouds can normally not be resolved. Hence the main parameter obtainable from the lidar is distance to cloud; in some cases the cloud depth can also be determined. During FIRE the lidar was operational on 7 of the 10 Electra flights, and data were taken when the distance between cloud and aircraft (minimum range) was at least 500 m. The lidar was usually operated at 8 Hz, which at a flight speed of 100 m s(-1) translates into a horizontal resolution of about 12 m. The backscatter as function of time (equivalent to distance) for each laser pulse is stored in digital form on magnetic tape. Currently, three independent variables are available to the investigators on the FIRE Electra data tapes: lidar range to cloud, strength of return (relative power), and pulse width of return, which is related to penetration depth.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA, Langley Research Center, FIRE Science Results 1988; p 313-317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...