ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Compartmentation ; Computer model ; Pollution ; Proton concentration ; Sulfur dioxide ; Sulfur metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using experimental information obtained in earlier studies on cellular buffering and SO2 uptake into leaves (Pfanz and Heber, 1986, Plant Physiol. 81, 597–602; Pfanz et al., 1987 a, b, Plant Physiol.), a mathematical model is presented which permits computer analysis of the transport of SO2 from the atmosphere into the mesophyll of leaves and describes the intracellular distribution of hydration products of SO2. Oxidation of sulfite and metabolization of sulfate can also be included. Although the model does not attempt to incorporate all available information on the intracellular transport of sulfur species, it permits general conclusions in regard to cellular responses to SO2. The model can be extended and modified for gases other than SO2. Examples are presented to illustrate the information the model is able to give. Times required for SO2 equilibration are long. Equilibrium relationships between SO2 in the atmosphere and cellular SO2 show that in order to survive in even slightly contaminated air, leaves must prevent equilibration between external and internal SO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Compartmentation ; Computer model ; Pollution ; Proton concentration ; Sulfur dioxide ; Sulfur metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A computer model is used to analyze fluxes of SO2 from polluted air into leaves and the intracellular distribution of sulfur species derived from SO2. The analysis considers only effects of acidification and of anion accumulation. (i) The SO2 flux into leaves is practically exclusively controlled by the boundary-layer resistance of leaves to gas diffusion and by stomatal opening. At constant stomatal opening, flux is proportional to the concentration of SO2 in air. (ii) The sink capacity of cellular compartments for SO2 depends on intracellular pH and the intracellular localization of reactions capable of oxidizing or reducing SO2. In the mesophyll of illuminated leaves, the chloroplasts possess the highest trapping potential for SO2. (iii) If intracellular ion transport were insignificant, and if bisulfite and sulfite could not be oxidized or reduced, leaves with opened stomata would rapidly be killed both by the accumulation of sulfites and by acidification of chloroplasts and cytosol even if SO2 levels in air did not exceed concentrations thought to be permissible. Acidification and sulfite accumulation would remain confined largely to the chloroplasts and to the cytosol under these conditions. (iv) Transport of bisulfite and protons produced by hydration of SO2 into the vacuole cannot solve the problem of cytoplasmic accumulation of bisulfite and sulfite and of cytoplasmic acidification, because SO2 generated in the acidic vacuole from the bisulfite anion would diffuse back into the cytoplasm. (v) Oxidation to sulfate which is known to occur mainly in the chloroplasts can solve the problem of cytoplasmic sulfite and bisulfite accumulation, but aggravates the problem of chloroplastic and cytosolic acidification. (vi) A temporary solution to the problem of acidification requires the transfer of H+ and sulfate into the vacuole. This transport needs to be energized. The storage capacity of the vacuole for protons and sulfate defines the extent to which SO2 can be detoxified by oxidation and removal of the resulting protons and sulfate anions from the cytoplasm. Calculations show that even at atmospheric levels of SO2 thought to be tolerable, known vacuolar buffer capacities are insufficient to cope with proton production during oxidation of SO2 to sulfate within a vegetation period. (vii) A permanent solution to the problem of acidification is the removal of protons. Protons are consumed during the reduction of sulfate to sulfide. Proteins and peptides contain sulfur at the level of sulfide. During photosynthesis in the presence of the permissible concentration of 0.05μl·l-1 SO2, sulfur may be deposited in plants at a ratio not far from 1/500 in relation to carbon. The content of reduced sulfur to carbon is similar to that ratio only in fast-growing, protein-rich plants. Such plants may experience little difficulty in detoxifying SO2. In contrast, many trees may contain reduced sulfur at a ratio as low as 1/10 000 in relation to carbon. Excess sulfur deposited in such trees during photosynthesis in polluted air gives rise to sulfate and protons. If detoxification of SO2 by reduction is inadequate, and if the storage capacity of the vacuoles for protons and sulfate is exhausted, damage is unavoidable. Calculations indicate that trees with a low ratio of reduced S to C cannot tolerate long-term exposure to concentrations of SO2 as low as 0.02 or 0.03 μl·l-1 which so far have been considered to be non-toxic to sensitive plant species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...