ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (8)
  • Computer Programming and Software  (2)
  • Engineering (General)  (1)
  • Instrumentation and Photography; Man/System Technology and Life Support  (1)
  • 1
    Publication Date: 2019-07-12
    Description: An electronic instrument that could detect the potentially dangerous buildup of ice on an airplane wing is undergoing development. The instrument is based on a microwave transmission line configured as a capacitance probe: at selected spots, the transmission-line conductors are partly exposed to allow any ice and/or liquid water present at those spots to act as predominantly capacitive electrical loads on the transmission line. These loads change the input impedance of the transmission line, as measured at a suitable excitation frequency. Thus, it should be possible to infer the presence of ice and/or liquid water from measurements of the input impedance and/or electrical parameters related to the input impedance. The sensory transmission line is of the microstrip type and thus thin enough to be placed on an airplane wing without unduly disturbing airflow in flight. The sensory spots are small areas from which the upper layer of the microstrip has been removed to allow any liquid water or ice on the surface to reach the transmission line. The sensory spots are spaced at nominal open-circuit points, which are at intervals of a half wavelength (in the transmission line, not in air) at the excitation frequency. The excitation frequency used in the experiments has been 1 GHz, for which a half wavelength in the transmission line is .4 in. (.10 cm). The figure depicts a laboratory prototype of the instrument. The impedance-related quantities chosen for use in this version of the instrument are the magnitude and phase of the scattering parameter S11 as manifested in the in-phase (I ) and quadrature (Q) outputs of the phase detector. By careful layout of the transmission line (including the half-wavelength sensor spacing), one can ensure that the amplitude and phase of the input to the phase detector keep shifting in the same direction as ice forms on one or more of the sensor areas. Although only one transmission-line sensor strip is used in the laboratory version, in a practical application, it could be desirable to install multiple strips on different areas to detect localized icing. In that case, a multiplexer should be used to connect the various strips to the phase detector for sequential measurements. Experiments have been performed with freezing and thawing of water and of water/glycol mixtures. The experiments have shown that, whether or not glycol is present, it is possible to distinguish between liquid water and ice via the I and Q outputs; in particular, the equipment can be adjusted so that when water freezes, I decreases and Q increases. With respect to the operation of this instrument, the main effect of glycol is to increase the freezing or thawing time.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23118 , NASA Tech Briefs, June 2004; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Microwave ablation in the form of microwave energy applied to a heart muscle by a coaxial catheter inserted in a vein in the groin area can be used to heat and kill diseased heart cells. A microwave catheter has been developed to provide deep myocardial ablation to treat ventricular tachycardia by restoring appropriate electrical activity within the heart and eliminating irregular heartbeats. The resulting microwave catheter design, which is now being developed for commercial use in treating ventricular tachycardia, can be modified to treat prostate cancer and benign prostatic hyperplasia (BPH). Inasmuch as the occurrence of BPH is increasing currently 350,000 operations per year are performed in the United States alone to treat this condition this microwave catheter has significant commercial potential.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23049 , NASA Tech Briefs, June 2005; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: A proposed tracking receiver system containing three suitably positioned antenna elements and special signal-processing equipment would determine the direction of incidence of a microwave signal containing spread-spectrum digital data modulation. If the system were to contain two sets of antenna elements separated by a known baseline, it could determine the location of the transmitter as the intersection of the lines of incidence on the two antennas. Such systems could be used for diverse purposes in outer space and on Earth, including tracking astronauts and small robotic spacecraft working outside a spacecraft or space station, and locating cellular telephones from which distress calls have been made. The principle of operation does not require the transmission of a special identifying or distress signal by the cellular telephone or other transmitter to be tracked; instead, the system could utilize the data signal routinely sent by the transmitter, provided that the signal had the characteristics needed for processing.
    Keywords: Computer Programming and Software
    Type: MSC-23193 , NASA Tech Briefs, November 2003; 5-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Wheel-based sensors for detection of ice on roads and approximate measurement of the thickness of the ice are under development. These sensors could be used to alert drivers to hazardous local icing conditions in real time. In addition, local ice-thickness measurements by these sensors could serve as guidance for the minimum amount of sand and salt required to be dispensed locally onto road surfaces to ensure safety, thereby helping road crews to utilize their total supplies of sand and salt more efficiently. Like some aircraft wing-surface ice sensors described in a number of previous NASA Tech Briefs articles, the wheelbased ice sensors are based, variously, on measurements of changes in capacitance and/or in radio-frequency impedance as affected by ice on surfaces. In the case of ice on road surfaces, the measurable changes in capacitance and/or impedance are attributable to differences among the electric permittivities of air, ice, water, concrete, and soil. In addition, a related phenomenon that can be useful for distinguishing between ice and water is a specific transition in the permittivity of ice at a temperature- dependent frequency. This feature also provides a continuous calibration of the sensor to allow for changing road conditions. Several configurations of wheel-based ice sensors are under consideration. For example, in a simple two-electrode capacitor configuration, one of the electrodes would be a circumferential electrode within a tire, and the ground would be used as the second electrode. Optionally, the steel belts that are already standard parts of many tires could be used as the circumferential electrodes. In another example (see figure), multiple electrodes would be embedded in rubber between the steel belt and the outer tire surface. These electrodes would be excited in alternating polarities at one or more suitable audio or radio frequencies to provide nearly continuous monitoring of the road surface under the tire. In still another example, one or more microwave stripline(s) or coplanar waveguide(s) would be embedded in a tire near its outer surface; in comparison with lower-frequency capacitive devices, a device of this type could be more sensitive.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23565-1 , NASA Tech Briefs, November 2011; 12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or in proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24238-1 , NASA Tech Briefs, August 2011; 19-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A report presents additional information about the subject matter of Microwave Treatment of Prostate Cancer and Hyperplasia (MSC-23049), NASA Tech Briefs, Vol. 29, No. 6 (June 2005), page 62. To recapitulate: the basic idea is to use microwaves to heat and thereby kill small volumes of unhealthy prostate tissue. The prostate is irradiated with microwaves from one or more antennas positioned near the prostate by means of catheters inserted in the urethra and/or colon. The microwave frequency, power, and exposure time, phasing, positions, and orientations of the antennas may be chosen to obtain the desired temperature rise in the heated region and to ensure that the location and extent of the heated region coincides with the region to be treated to within a few millimeters. Going beyond the description in the cited previous article, the report includes a diagram that illustrates typical placement of urethra and colon antenna catheters and presents results of computationally simulated prostate-heating profiles for several different combinations of antenna arrangements, frequencies, and delivered- energy levels as well as experimental results within phantom materials. The advantage of the two-antenna technology is that the heat generated at each antenna is significantly reduced from that associated with only one antenna. The microwave energy radiated from each antenna is focused at the tumor center by adjusting the phasing of the irradiated microwave signal from the antennas.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23427 , NASA Tech Briefs, December 2005; 30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A directional, catheter-sized cylindrical antenna has been developed for localized delivery of microwave radiation for heating (and thus killing) diseased tissue without excessively heating nearby healthy tissue. By "localized" is meant that the antenna radiates much more in a selected azimuthal direction than in the opposite radial direction, so that it heats tissue much more on one side than it does on the opposite side. This antenna can be inserted using either a catheter or a syringe. A 2.4-mm prototype was tested, although smaller antennas are possible. Prior compact, cylindrical antennas designed for therapeutic localized hyperthermia do not exhibit such directionality; that is, they radiate in approximately axisymmetric patterns. Prior directional antennas designed for the same purpose have been, variously, (1) too large to fit within catheters or (2) too large, after deployment from catheters, to fit within the confines of most human organs. In contrast, the present antenna offers a high degree of directionality and is compact enough to be useable as a catheter in some applications.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23781 , NASA Tech Briefs, March 2008; 18-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. This report describes the research and development effort for this prototype integrated UWB tracking and CO2 sensing system. The remainder of the report is organized as follows. In Section II, the TOA tracking methodology is introduced and the 3D tracking algorithm is derived. The simulation results are discussed in Section III. In Section VI, prototype system design and field tests are discussed. Some concluding remarks and future works are presented in Section V.
    Keywords: Instrumentation and Photography; Man/System Technology and Life Support
    Type: JSC-CN-33575-1 , ISS R&D Conference 2015; Jul 07, 2015 - Jul 09, 2015; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Method and apparatus are provided for determining a superstrate on or near a sensor, e.g., for detecting the presence of an ice superstrate on an airplane wing or a road. In one preferred embodiment, multiple measurement cells are disposed along a transmission line. While the present invention is operable with different types of transmission lines, construction details for a presently preferred coplanar waveguide and a microstrip waveguide are disclosed. A computer simulation is provided as part of the invention for predicting results of a simulated superstrate detector system. The measurement cells may be physically partitioned, nonphysically partitioned with software or firmware, or include a combination of different types of partitions. In one embodiment, a plurality of transmission lines are utilized wherein each transmission line includes a plurality of measurement cells. The plurality of transmission lines may be multiplexed with the signal from each transmission line being applied to the same phase detector. In one embodiment, an inverse problem method is applied to determine the superstrate dielectric for a transmission line with multiple measurement cells.
    Keywords: Engineering (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.
    Keywords: Computer Programming and Software
    Type: AIAA Annual Technical Symposium (ATS) 2006; May 19, 2006; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...