ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 24 (1983), S. 135-135 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 26 (1984), S. 125-143 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This paper shows that the spin-shift formalism developed in B. T. Pickup and A. Mukhopadhyay [Int. J. Quantum Chem. 26, 101 (1984)] supports a one-component diagrammatics which has a systematics akin to that in the spin-orbital many-body theory. The diagrams are neither Goldstone nor Yutsis type, and characterize the chain U(2R) ⊃ U(R)⊗SU(2) on which the spin-shift formalism is based. Accordingly, while the lines in such diagrams are labeled by the orbital indices, the diagram structure adequately reflects the irreducible representation of the group U(R). In this sense the paper presents a unitary group approach to the natural generalization of the usual many-body theory for the spin-adapted cases. A set of very simple rules is derived; their similarity with the corresponding rules in the ordinary many-body theory and practical utility are discussed in connection with (a) matrix elements over many-electron spin states and (b) closed- and open-shell many-body perturbation theory. A possibility of integral-driven many-body perturbation theory for open-shells is indicated. Connections of this formalism with others are also discussed.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 24 (1983), S. 136-136 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 54 (1995), S. 223-234 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A separation of the dynamic linear response is developed, which distinguishes between the one- and two-electron contributions to the molecular response, by partitioning the RPA equation. The derivation of the partitioning is given in both an RPA, equation of motion, type approach and using the alternative, but equivalent, density matrix method. Three physically distinct contributions are obtained, called the direct, interaction, and back contributions. The direct term is composed entirely of one-electron effects, while the interaction and back terms account for the electron-interaction contributions to the response. Results for the dynamic dipole polarizability suggest that while the one-electron contribution is dominant in the zero-frequency limit, the two-electron contribution becomes increasingly important as the frequency of the perturbation increases. This implies that approximation of the linear response by only one-electron contributions is acceptable for the static case, but is less relevant for the dynamic case. The ramifications of this observation, for the scaling of sum-over-states-type calculations of large molecular systems, is briefly discussed, as is the application of our partitioning method to the higher polarizabilities. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...