ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 10 (1976), S. 325-340 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A new method is proposed for the analysis of components of molecular interaction energy within the Hartree-Fock approximation. The Hartree-Fock molecular orbitals of the isolated molecules are used as the basis for the construction of Fock matrix of the supermolecule. Then certain blocks of this matrix are set to zero subject to specify boundary conditions of the supermolecule molecular orbitals, and the resultant matrix is diagonalized iteratively to obtain the desired energy components. This method can be considered as an extension of our previous method, but has an advantage in the explicit definition of the charge transfer energy, placing it on an equal footing with the exchange and polarization terms. The new method is compared with existing perturbation methods, and is also applied to the energy and electron density decomposition of (H2O)2.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1170-1179 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new computational scheme integrating ab initio and molecular mechanics descriptions in different parts of the same molecule is presented. In contrast with previous approaches, this method is especially designed to allow the introduction of molecular mechanics corrections in full geometry optimizations concerning problems usually studied through ab initio calculations on model systems. The scheme proposed in this article intends to solve some of the systematic error associated with modeling through the use of molecular mechanics corrections. This method, which does not require any new parameter, evaluates explicitly the energy derivatives with respect to geometrical parameters and therefore has a straightforward application to geometry optimization. Examples of its performance on two simple cases are provided: the equilibrium geometry of cyclopropene and the energy barriers on SN2 reactions of alkyl chloride systems. Results are in satisfactory agreement with those of full ab initio calculations in both cases. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 60 (1996), S. 1101-1109 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Test calculations of the newly developed “Integrated Molecular Orbital + Molecular Mechanics” (IMOMM) method were performed for the optimized equilibrium and transition structures and energies of ethane and n-butane. In this method, the total energy of a large molecular system is expressed as a sum of the MO energy of the small “model” system and a modified MM energy of the “real” system, and full geometry optimization is carried out using the gradient of this total energy. Various schemes of partition of the system into the MO part and the MM part, including some not intended in the original design of the method, were examined and compared with the pure ab initio MO and the pure MM results. In most reasonable partition schemes, the IMOMM method can reproduce the pure ab initio and the pure MM geometries and energies quite well. © 1996 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...