ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).
    Keywords: Composite Materials
    Type: E-17708 , E-17852 , SAMPE; May 23, 2011 - May 26, 2011; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: RTM Resins based on a-ODPA and a-BPDA with kinked diamines exhibit low-melt viscosity (approximately 10 poise). Composites made from a-ODPA resins (T(sub g) = 265-330 C) by RTM display good mechanical properties at 288 C (550 F), but soften at 315 C (600 F). Composites of RTM370 based on a-BPDA retain excellent mechanical properties at 315 C, exceeding BMI-5270-1 capability.
    Keywords: Composite Materials
    Type: International SAMPE Symposium and Exhibition; May 18, 2009 - May 21, 2009; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.
    Keywords: Composite Materials
    Type: E-18061 , Society for Advancement of Materials and Process Engineering (SAMPE); Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A series of polyimide resins with low-melt viscosities in the range of 10-30 poise and high glass transition temperatures (Tg s) of 330-370 C were developed for resin transfer molding (RTM) applications. These polyimide resins were formulated from 2,3,3 ,4 -biphenyltetracarboxylic dianhydride (a-BPDA) with 4-phenylethynylphthalic anhydride endcaps along with either 3,4 - oxyaniline (3,4 -ODA), 3,4 -methylenedianiline, (3,4 -MDA) or 3,3 -methylenedianiline (3,3 -MDA). These polyimides had pot lives of 30-60 minutes at 260-280 C, enabling the successful fabrication of T650-35 carbon fiber reinforced composites via RTM process. The viscosity profiles of the polyimide resins and the mechanical properties of the polyimide carbon fiber composites will be discussed.
    Keywords: Composite Materials
    Type: High Temple Workshop 2007 University of Dayton Research Institute; Feb 12, 2007 - Feb 15, 2007; Sedona, AZ; United States|International SAMPLE Symposium; Jun 03, 2007 - Jun 07, 2007; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.
    Keywords: Composite Materials
    Type: E-17698
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Composite Materials
    Type: E-661265 , Society for the Advancement of Materials and Process Engineering; Oct 17, 2011 - Oct 20, 2011; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A new series of low-melt viscosity imide resins (10-20 poise at 280 C) were formulated from asymmetric 2,3,3',4' -benzophenone dianhydride (a-BTDA) and 4-phenylethynylphthalic endcaps, along with 3,4' -oxydianiline, 3,3' -methylenedianiline and 3,3'- diaminobenzophenone, using a solvent-free melt process. a-BTDA RTM resins exhibited higher glass transition temperatures (Tg's = 330-400 C) compared to those prepared by asymmetric 2,3,3',4' -biphenyl dianhydride, (a-BPDA, Tg's = 320-370 C). These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fiber composites by a RTM process. Composites properties of a-BTDA resins, such as open-hole compression and short-beam shear strength, are compared to those of composites made from a-BPDA based resin at room temperature, 288 C and 315 C. These novel, high temperature RTM imide resins exhibit outstanding properties beyond the performance of conventional RTM resins, such as epoxy and BMI resins which have use-temperatures around 177 C and 232 C for aerospace applications.
    Keywords: Composite Materials
    Type: E-17516
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Two series of low-melt viscosity imide resins (2-15 poise at 260-280 C) were formulated from either asymmetric oxydiphthalic anhydride (a-ODPA) or asymmetric biphenyl dianhydride (a- BPDA) with 4-phenylethynyl endcap (PEPA), along with 3,4'-oxydianiline, 3,4 - methylenedianiline, 3,3 -methylenedianiline or 3,3 -diaminobenzophenone, using a solvent-free melt process. These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fabric composites by resin transfer molding (RTM). Composites from a-ODPA based resins display better open-hole compression strength and short beam shear strength from room temperature to 288 C than that of the corresponding a-BPDA based resins. However, due to the lower Tg s of a-ODPA based resins (265-330 C), their corresponding composites do not possess 315 C use capability while the a-BPDA based composites do. In essence, RTM 370 (T g = 370 C), derived from a-BPDA and 3,4 -ODA and PEPA, exhibits the best overall property performance at 315 C (600 F).
    Keywords: Composite Materials
    Type: E-17144-P , 54th International SAMPE Symposium; May 18, 2009 - May 21, 2009; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass transition temperature (Tg) of 370 C. RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites display excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288degC (550 F) for 1000 h, and under hot-wet conditions. In ballistic impact testing, RTM370 triaxial braided T650-35 carbon fiber composites exhibited enhanced energy absorption at 288 C (550 F) compared to ambient temperature.
    Keywords: Composite Materials
    Type: E-664036 , E-664434 , International Society for the Advancement of Material and Process Engineering Symposium; May 06, 2013 - May 09, 2013; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...