ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Composite Materials  (3)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-12
    Description: There are few if any clear, visual, and detailed images of carbon fiber strand failures under tension useful for determining mechanisms, sequences of events, different types of failure modes, etc. available to researchers. This makes discussion of physics of failure difficult. It was also desired to find out whether the test article-to-test rig interface (grip) played a part in some failures. These failures have nothing to do with stress rupture failure, thus representing a source of waste for the larger 13-00912 investigation into that specific failure type. Being able to identify or mitigate any competing failure modes would improve the value of the 13-00912 test data. The beginnings of the solution to these problems lay in obtaining images of strand failures useful for understanding physics of failure and the events leading up to failure. Necessary steps include identifying imaging techniques that result in useful data, using those techniques to home in on where in a strand and when in the sequence of events one should obtain imaging data.
    Keywords: Composite Materials
    Type: NASA/TM-2016-219188 , NESC-RP-13-00860 , L-20701 , NF1676L-24331
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Broadband modal acoustic emission (AE) data were acquired during intermittent load hold tensile test profiles on Toray T1000G carbon fiber-reinforced epoxy (C/Ep) single tow specimens. A novel trend seeking statistical method to determine the onset of significant AE was developed, resulting in more linear decreases in the Felicity ratio (FR) with load, potentially leading to more accurate failure prediction. The method developed uses an exponentially weighted moving average (EWMA) control chart. Comparison of the EWMA with previously used FR onset methods, namely the discrete (n), mean (n (raised bar)), normalized (n%) and normalized mean (n(raised bar)%) methods, revealed the EWMA method yields more consistently linear FR versus load relationships between specimens. Other findings include a correlation between AE data richness and FR linearity based on the FR methods discussed in this paper, and evidence of premature failure at lower than expected loads. Application of the EWMA method should be extended to other composite materials and, eventually, composite components such as composite overwrapped pressure vessels. Furthermore, future experiments should attempt to uncover the factors responsible for infant mortality in C/Ep strands.
    Keywords: Composite Materials
    Type: JSC-CN-26080
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
    Keywords: Composite Materials
    Type: M14-3373 , Shock and Vibration Symposium/Shock and Vibrations Exchange (SAVE); Nov 03, 2013 - Nov 07, 2013; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...