ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Composite Materials  (3)
  • Inorganic, Organic and Physical Chemistry  (2)
  • 1
    Publication Date: 2019-07-17
    Description: The Nobel Prize winning discovery of the Buckuball (C60) in 1985 at Rice University by a group including Dr. Richard Smalley led to the whole new class of carbon allotropes including fullerenes and nanotubes. Especially interesting from many viewpoints are single-walled carbon nanotubes, which structurally are like a single graphitic sheet wrapped around a cylinder and capped at the ends. This cylinders have diameter as small as 0.5 - 2 nm (1/100,000th the diameter of a human hair) and are as long as 0.1 - 1 mm. Nanotubes are really individual molecules and believed to be defect-free, leading to high tensile strength despite their low density. Additionally, these fibers exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, strength 100 times higher than steel at one-sixth the weight, and high strain to failure. Thus it is believed that developments in the field of nanotechnology will lead to stronger and lighter composite materials for next generation spacecraft. Lack of a bulk method of production is the primary reason nanotubes are not used widely today. Toward this goal JSC nanotube team is exploring three distinct production techniques: laser ablation, arc discharge and chemical vapor deposition (CVD, in collaboration with Rice University). In laser ablation technique high-power laser impinges on the piece of carbon containing small amount of catalyst, and nanotubes self-assemble from the resulting carbon vapor. In arc generator similar vapor is created in arc discharge between carbon electrodes with catalyst. In CVD method nanotubes grow at much lower temperature on small catalyst particles from carbon-containing feedstock gas (methane or carbon monoxide). As of now, laser ablation produces cleanest material, but mass yield is rather small. Arc discharge produces grams of material, but purity is low. CVD technique is still in baby steps, but preliminary results look promising, as well as perspective of scaling the process up. We are also working on necessary purification of nanotubes. Applications of nanotubes are in such various fields as lightweight composites, molecular electronics, energy storage (electrodes in Li ion batteries), flat panel displays, conductive polymers, etc. JSC nanotube team is focused on development of lightweight materials. We work on the injection thermoset epoxies reinforced with nanotubes. Early results show good wetting of nanotube surface with epoxy, which is very important. More research will be possible as more nanotubes become available.
    Keywords: Composite Materials
    Type: Developing Space Operations, Technology, and Utilization; May 28, 1999; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Promise of applications of carbon nanotubes has led to an intense effort at NASA/JSC, especially in the area of nanotube composites. Using the extraordinary mechanical strength of nanotubes, NASA hopes to design this revolutionary lightweight material for use in aerospace applications. Current research focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical applications. In pursuit of these goals, we have set up both laser and arc production processes for nanotubes. An in-depth diagnostic study of the plasma plume in front of the laser target has been studied to try to determine nanotube growth mechanisms. Complementary studies of characterization of nanotube product have added to knowledge of growth conditions. Results of our preliminary experiments in incorporating nanotubes into composites will be presented. Morphology and mechanical properties of the nanotubes composites will be discussed.
    Keywords: Composite Materials
    Type: Nanotube 1999: Science and Application of Nanotubes; Jul 24, 1999 - Jul 27, 1999; East Lansin, MI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.). However, as produced SWCNT samples are polydispersed, with many (n,m) types present and typical approximate 1:2 metal/semiconductor ratio. It has been recognized that production of SWCNTs with narrow 'tube type populations' is beneficial for their use in applications, as well as for the subsequent sorting efforts. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The nanotube type populations were studied with respect to the production temperature with two catalyst compositions: Co/Ni and Rh/Pd. The nanotube type populations were measured via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that in the case of Co/Ni catalyst, decreased production temperature leads to smaller average diameter, exceptionally narrow diameter distribution, and strong preference toward (8,7) nanotubes. The other nanotubes present are distributed evenly in the 7-30 deg chiral angle range. In the case of Rh/Pd catalyst, a decrease in the temperature leads to a small decrease in the average diameter, with the chiral angle distribution skewed towards 30 o and a preference toward (7,6), (8,6) and (8,7) nanotubes. However, the diameter distribution remains rather broad. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: 2008 MRS Fall meeting; Dec 01, 2008 - Dec 05, 2008; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: This paper presents diagnostic data obtained from the plume of a graphite composite target during carbon nanotube production by the double-pulse laser oven method. The insitu emission spectrum (300 to 650 nm) is recorded at different locations upstream of the target and at different delay times from the lasers (IR and green). Spectral features are identified as emissions from C2 (Swan System: a (sup 3)pi(sub g) - delta (sup 3)pi(sub u) and C3 (Comet Head System: A (sup 1)pi(sub u) - chi (sup 1)sigma(sub u) (sup +). Experimental spectra are compared with computed spectra to estimate vibrational temperatures of excited state C2 in the range of 2500 to 4000 kappa The temporal evolution of the 510 nm band of C2 is monitored for two target positions in various locations which shows confinement of the plume in the inner tube and increase in plume velocity with temperature. The excitation spectra of C2 are obtained by using a dye laser to pump the (0,1) transition of the Swan System and collecting the Laser Induced Fluorescence signal from C2 These are used to obtain "ground-state" rotational and vibrational temperatures which are close to the oven temperature. Images of the plume are also collected and are compared with the spectral measurements.
    Keywords: Composite Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-21424 , NT04- International Conference on the Science and Application of Nanotubes; Jul 19, 2004 - Jul 24, 2004; San Luis Potosi; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...