ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • Earth Resources and Remote Sensing  (5)
  • Communications and Radar  (1)
Collection
  • Other Sources  (6)
Years
  • 1
    Publication Date: 2019-06-27
    Description: Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOPs other radiometric calibration procedures i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30-34 km to 36-39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. As well, an enhanced strategy for filtering the radiation-induced noise from high energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved MERRA-2 model. An aerosol scattering ratio of 1.01 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2-3% lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of stratospheric aerosols. Validation results using airborne lidar measurements are also presented. Biases relative to collocated measurements acquired by the Langley Research Center (LaRC) airborne high spectral resolution lidar (HSRL) are reduced from 3.6% 2.2% in the version 3 data set to 1.6% 2.4 % in the version 4 release.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-29299 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 11; 1459-1479
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: NASA's CALIPSO satellite carries both the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Imaging Infrared Radiometer (IIR). The lidar is ideally suited to viewing the very top of tropical cyclones, and the IIR provides critical optical and microphysical information. The lidar and the IIR data work together to understand storm clouds since they are perfectly co-located, and big tropical cyclones provide an excellent complex target for comparing the observations. There is a lot of information from these case studies for understanding both the observations and the tropical cyclones, and we are just beginning to scratch the surface of what can be learned. Many tropical cyclone cloud particle measurements are focused on the middle and lower regions of storms, but characterization of cyclone interaction with the lowermost stratosphere at the upper storm boundary may be important for determining the total momentum and moisture transport budget, and perhaps for predicting storm intensity as well. A surprising amount of cloud ice is to be found at the very top of these big storms.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-14482 , NF1676L-15854 , 2012 AGU Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco,CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the ability to fit the MODIS data. Therefore the MODIS measurements can be used to identify the calibration problem and correct for it. The CALIPSO-MODIS measurements of the profiles of fine and coarse aerosols, together with CALIPSO measurements of clouds vertical distribution, is expected to be critically important in understanding aerosol transport across continents and political boundaries, and to study aerosol-cloud interaction and its effect on precipitation and global forcing of climate.
    Keywords: Earth Resources and Remote Sensing
    Type: TGRS-00230-2002
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We have been studying the backscatter ratio of the two CALIPSO wavelengths for 3 different targets. We are showing the ratio of integrate attenuated backscatter coefficient for cirrus clouds, ocean surface and liquid. Water clouds for one month of nightime data (left:July,right:December), Only opaque cirrus classified as randomly oriented ice[1] are used. For ocean and water clouds, only the clearest shots, determined by a threshold on integrated attenuated backscatter are used. Two things can be immediately observed: 1. A similar trend (black dotted line) is visible using all targets, the color ratio shows a tendency to be higher north and lower south for those two months. 2. The water clouds average value is around 15% lower than ocean surface and cirrus clouds. This is due to the different multiple scattering at 532 nm and 1064 nm [2] which strongly impact the water cloud retrieval. Conclusion: Different targets can be used to improve CALIPSO 1064 nm calibration accuracy. All of them show the signature of an instrumental calibration shift. Multiple scattering introduce a bias in liquid water cloud signal but it still compares very well with all other methods and should not be overlooked. The effect of multiple scattering in liquid and ice clouds will be the subject of future research. If there really is a sampling issue. Combining all methods to increase the sampling, mapping the calibration coefficient or trying to reach an orbit per orbit calibration seems an appropriate way.
    Keywords: Communications and Radar
    Type: NF1676L-11600 , International Symposium on the A-Train Satellite Constellation 2010; Oct 25, 2010 - Oct 28, 2010; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-23
    Description: Version 2 of the Level 1b calibrated radiances of the Imaging Infrared Radiometer (IIR) on board the Cloud-Aerosol Lidar and Infrared Satellite Observation (CALIPSO) satellite has been released recently. This new version incorporates corrections of small but systematic seasonal calibration biases previously revealed in Version 1 data products mostly north of 30 N. These biases of different amplitudes in the three IIR channels 8.65 m (IIR1), 10.6 m (IIR2), and 12.05 m (IIR3) were made apparent by a striping effect in images of IIR inter-channel brightness temperature differences (BTDs) and through seasonal warm biases of nighttime IIR brightness temperatures in the 3060 N latitude range. The latter were highlighted through observed and simulated comparisons with similar channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua spacecraft. To characterize the calibration biases affecting Version 1 data, a semi-empirical approach is developed, which is based on the in-depth analysis of the IIR internal calibration procedure in conjunction with observations such as statistical comparisons with similar MODIS/Aqua channels. Two types of calibration biases are revealed: an equalization bias affecting part of the individual IIR images and a global bias affecting the radiometric level of each image. These biases are observed only when the temperature of the instrument increases, and they are found to be functions of elapsed time since night-to-day transition, regardless of the season. Correction coefficients of Version 1 radiances could thus be defined and implemented in the Version 2 code. As a result, the striping effect seen in Version 1 is significantly attenuated in Version 2. Systematic discrepancies between nighttime and daytime IIRMODIS BTDs in the 3060 N latitude range in summer are reduced from 0.2 K in Version 1 to 0.1 K in Version 2 for IIR1MODIS29. For IIR2MODIS31 and IIR3MODIS32, they are reduced from 0.4 K to close to zero, except for IIR3MODIS32 in June, where the night-minus-day difference is around 0.1 K.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-28964 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 11; 4; 2485-2500
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-14
    Description: A new satellite remote sensing method is described whereby the sensitivity of thermal infrared wave resonance absorption to small ice crystals is exploited to estimate cirrus cloud ice-particle number concentration N, effective diameter D(sub e) and ice water content IWC. This method uses co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 and 12.05 m. Using particle size distributions measured over many flights of the TC4 (Tropical Composition, Cloud and Climate Coupling) and the mid-latitude SPARTICUS (Small Particles in Cirrus) field campaigns, we show for the first time that NIWC is tightly related to (sub eff); the ratio of effective absorption optical depths at 12.05 and 10.6 m. Relationships developed from in situ aircraft measurements are applied to (sub eff) derived from IIR measurements to retrieve N. This satellite remote sensing method is constrained by measurements of (sub eff) from the IIR and is by essence sensitive to the smallest ice crystals. Retrieval uncertainties are discussed, including uncertainties related to in situ measurement of small ice crystals (D〈15 m), which are studied through comparisons with IIR (sub eff). The method is applied here to single-layered semi-transparent clouds having a visible optical depth between about 0.3 and 3, where cloud base temperature is 235 K. CALIPSO data taken over 2 years have been analyzed for the years 2008 and 2013, with the dependence of cirrus cloud N and D(sub e) on altitude, temperature, latitude, season (winter vs. summer) and topography (land vs. ocean) described. The results for the mid-latitudes show a considerable dependence on season. In the high latitudes, N tends to be highest and De smallest, whereas the opposite is true for the tropics. The frequency of occurrence of these relatively thick cirrus clouds exhibited a strong seasonal dependence in the high latitudes, with the occurrence frequency during Arctic winter being at least twice that of any other season. Processes that could potentially explain some of these micro- and macroscopic cloud phenomena are discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-30277 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 23; 17,325–17,354
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...