ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Bone crystals ; X-ray diffraction ; Bone quality ; Mineral analysis ; Ipriflavone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract We have previously found that a short-term treatment with high doses of ipriflavone increased bone density and improved the biomechanical properties of adult male rat bones, without altering their mineral composition. To determine whether this effect can be associated with alterations of bone crystal structure, we have performed X-ray diffraction analysis of bones obtained from rats treated with ipriflavone at doses that were effective in inducing favorable changes on bone density and biomechanics. Eighteen-week-old male Sprague Dawley rats were treated by oral route with either ipriflavone (200 or 400 mg/kg/day), or its vehicle for 12 weeks. The treatment was well tolerated and body weight increased to the same extent in all animals. As a measure of bone crystallinity, we examined the (310) and (002) reflections of the X-ray diffraction patterns, corresponding to the directions perpendicular and parallel to the c-axis of the crystals, respectively. No major differences were observed between ipriflavone-treated and control animals for the broadening parameter β1/2 for (310) and (002) peaks, as well as for lattice parameters. Therefore, a 12-week treatment with ipriflavone at high doses does not induce significant modifications of bone “crystallinity.” Thus. the positive effect of ipriflavone on bone mineral density appears to be associated with an increased apatite crystal formation rather than an increase of crystal size. These results provide further evidence for the safety and usefulness of ipriflavone in the treatment of osteoporotic syndromes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0827
    Keywords: Osteoblasts ; Matrix proteins ; Collagen ; Cell differentiation ; Calcification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract Ipriflavone (IP), an isoflavone derivative, has been shown to interfere with bone remodeling by inhibiting bone resorption and perhaps stimulating bone formation. In this study, we have analyzed the effect of IP and its metabolites on the differentiation and function of human osteoblastic cells. Bone marrow stromal osteoprogenitor cells (BMC) and trabecular bone osteoblasts (HOB) were isolated from human donors. The former can be induced to differentiate by treatment with dexamethasone, whereas the latter represent a more differentiated osteoblast. Incubation of BMC with metabolite III (10-5 M) for 1 week induced modest but significant changes of alkaline phosphatase activity. Though both IP and metabolite III stimulated the expression of bone sialoprotein mRNA, a protein involved in cell attachment to the matrix, only metabolite III increased the steady-state level of decorin mRNA, a collagen fibrillogenesis-regulating proteoglycan. Metabolites III and V, but not the other isoflavones, increased the expression of type I collagen mRNA in HOB, whereas no detectable changes were observed in BMC cells with any of the experimental compounds. In HOB, an increased abundance of osteopontin and bone sialoprotein mRNA were also obtained after 1-week treatment with IP or metabolite V. No appreciable effects of IP or its metabolites were seen on osteocalcin expression and synthesis by either cell type. Finally, IP consistently increased the amount of 45Ca incorporated into the cell layer by BMC, and stimulated mineralization of both BMC and HOB, assessed by von Kossa staining. Thus, IP and its metabolites regulate the differentiation and biosynthetic properties of human bone-forming cells by enhancing the expression of some important matrix proteins and facilitating the mineralization process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...