ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8319-8346, doi:10.1175/JCLI-D-14-00556.1.
    Description: New objectively balanced observation-based reconstructions of global and continental energy budgets and their seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current estimates of net radiation into Earth’s surface exceed corresponding turbulent heat fluxes by 13–24 W m−2. The largest imbalances occur over oceanic regions where the component algorithms operate independent of closure constraints. Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in the component fluxes. To reintroduce energy and water cycle closure information lost in the development of independent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget estimates that simultaneously satisfy all energy and water cycle balance constraints. Globally, 180 W m−2 of atmospheric longwave cooling is balanced by 74 W m−2 of shortwave absorption and 106 W m−2 of latent and sensible heat release. At the surface, 106 W m−2 of downwelling radiation is balanced by turbulent heat transfer to within a residual heat flux into the oceans of 0.45 W m−2, consistent with recent observations of changes in ocean heat content. Annual mean energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented.
    Description: This study is the result of a collaboration of multiple investigators each supported by the NEWS program.
    Keywords: Climatology ; Energy budget/balance ; Heat budgets/fluxes ; Radiative fluxes ; Surface fluxes ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-10
    Description: Purpose As stated in the United Nations Global Assessment Report 2022 Concept Note, decision-makers everywhere need data and statistics that are accurate, timely, sufficiently disaggregated, relevant, accessible and easy to use. The purpose of this paper is to demonstrate scalable and replicable methods to advance and integrate the use of earth observation (EO), specifically ongoing efforts within the Group on Earth Observations (GEO) Work Programme and the Committee on Earth Observation Satellites (CEOS) Work Plan, to support risk-informed decision-making, based on documented national and subnational needs and requirements. Design/methodology/approach Promotion of open data sharing and geospatial technology solutions at national and subnational scales encourages the accelerated implementation of successful EO applications. These solutions may also be linked to specific Sendai Framework for Disaster Risk Reduction (DRR) 2015–2030 Global Targets that provide trusted answers to risk-oriented decision frameworks, as well as critical synergies between the Sendai Framework and the 2030 Agenda for Sustainable Development. This paper provides examples of these efforts in the form of platforms and knowledge hubs that leverage latest developments in analysis ready data and support evidence-based DRR measures. Findings The climate crisis is forcing countries to face unprecedented frequency and severity of disasters. At the same time, there are growing demands to respond to policy at the national and international level. EOs offer insights and intelligence for evidence-based policy development and decision-making to support key aspects of the Sendai Framework. The GEO DRR Working Group and CEOS Working Group Disasters are ideally placed to help national government agencies, particularly national Sendai focal points to learn more about EOs and understand their role in supporting DRR. Originality/value The unique perspective of EOs provide unrealized value to decision-makers addressing DRR. This paper highlights tangible methods and practices that leverage free and open source EO insights that can benefit all DRR practitioners.
    Description: Published
    Description: 163-185
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Keywords: Earth observations ; Geospatial ; Open science ; Disaster risk reduction, ; Sendai framework
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...