ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Submesoscale  (3)
  • Climate variability and change  (1)
  • Flow reconstruction  (1)
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(8), (2019): 5999-6014, doi: 10.1029/2019JC015034.
    Description: Oceanic fronts are dynamically active regions of the global ocean that support upwelling and downwelling with significant implications for phytoplankton production and export. However (on time scales urn:x-wiley:jgrc:media:jgrc23568:jgrc23568-math-0001 the inertial time scale), the vertical velocity is 103–104 times weaker than the horizontal velocity and is difficult to observe directly. Using intensive field observations in conjunction with a process study ocean model, we examine vertical motion and its effect on phytoplankton fluxes at multiple spatial horizontal scales in an oligotrophic region in the Western Mediterranean Sea. The mesoscale ageostrophic vertical velocity (∼10 m/day) inferred from our observations shapes the large‐scale phytoplankton distribution but does not explain the narrow (1–10 km wide) features of high chlorophyll content extending 40–60 m downward from the deep chlorophyll maximum. Using modeling, we show that downwelling submesoscale features concentrate 80% of the downward vertical flux of phytoplankton within just 15% of the horizontal area. These submesoscale spatial structures serve as conduits between the surface mixed layer and pycnocline and can contribute to exporting carbon from the sunlit surface layers to the ocean interior.
    Description: The AlborEx experiment was conducted in the framework of PERSEUS EU‐funded project (Grant 287600) and was led by the Spanish National Research Council (CSIC) and involved other national and international partners: Balearic Islands Coastal Observing and Forecasting System (SOCIB, Spain); Consiglio Nazionale delle Ricerche (CNR, Italy); Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italy); and Woods Hole Oceanographic Institution (WHOI, ONR Grant N00014‐16‐1‐3130). Glider operations were partially funded by JERICO FP7 project. Part of this work has been carried out as part of the Copernicus Marine Environment Monitoring Service (CMEMS) MedSUB project. CMEMS is implemented by Mercator Ocean in the framework of a delegation agreement with the European Union. S. R. and A. P. acknowledge support from WHOI Subcontract A101339. Data available from authors: Ship CTDs, glider and VM‐ADCP data files are available in the SOCIB data catalog (https://doi.org/10.25704/z5y2-qpye); model data are available at IMEDEA data catalog https://ide.imedea.uib-csic.es/thredds/catalog/data/projects/alborex/catalog.html. We thank all the crew and participants on board R/V SOCIB for their collaboration and Marc Torner and the SOCIB glider Facility for their efficient cooperation. We also thank B. Mourre for numerical data from the Western Mediterranean Operational Model to initialize the Process Study Ocean Model. Figures were created using the cmocean colormaps package (Thyng et al., 2016).
    Keywords: Vertical motion ; Ocean front ; Mesoscale ; Submesoscale ; Transport ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Authors, 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pascual, A., Ruiz, S., Olita, A., Troupin, C., Claret, M., Casas, B., Mourre, B., Poulain, P. M., Tovar-Sanchez, A., Capet, A., Mason, E., Allen, J. T., Mahadevan, A., & Tintore, J. A multiplatform experiment to unravel meso- and submesoscale processes in an intense front (AlborEx). Frontiers in Marine Science, 4(39), (2017), doi:10.3389/fmars.2017.00039.
    Description: The challenges associated with meso- and submesoscale variability (between 1 and 100 km) require high-resolution observations and integrated approaches. Here we describe a major oceanographic experiment designed to capture the intense but transient vertical motions in an area characterized by strong fronts. Finescale processes were studied in the eastern Alboran Sea (Western Mediterranean) about 400 km east of the Strait of Gibraltar, a relatively sparsely sampled area. In-situ systems were coordinated with satellite data and numerical simulations to provide a full description of the physical and biogeochemical variability. Hydrographic data confirmed the presence of an intense salinity front formed by the confluence of Atlantic Waters, entering from Gibraltar, with the local Mediterranean waters. The drifters coherently followed the northeastern limb of an anticyclonic gyre. Near real time data from acoustic current meter data profiler showed consistent patterns with currents of up to 1 m/s in the southern part of the sampled domain. High-resolution glider data revealed submesoscale structures with tongues of chlorophyll-a and oxygen associated with the frontal zone. Numerical results show large vertical excursions of tracers that could explain the subducted tongues and filaments captured by ocean gliders. A unique aspect of AlborEx is the combination of high-resolution synoptic measurements of vessel-based measurements, autonomous sampling, remote sensing and modeling, enabling the evaluation of the underlying mechanisms responsible for the observed distributions and biogeochemical patchiness. The main findings point to the importance of fine-scale processes enhancing the vertical exchanges between the upper ocean and the ocean interior.
    Description: The AlborEx experiment was conducted in the framework of PERSEUS EU-funded project (Grant agreement no: 287600). The experiment was led by the Spanish National Research Council (CSIC) institution with strong involvement and cooperation from other national and international partners: Balearic Islands Coastal Observing and Forecasting System (SOCIB, Spain); Consiglio Nazionale delle Ricerche (CNR, Italy), McGill University (Canada); Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italy) and Woods Hole Oceanographic Institution (WHOI, USA). Glider operations were partially funded by JERICO FP7 project. AP acknowledges support from the Spanish National Research Program (E-MOTION/CTM2012-31014 and PRE-SWOT/CTM2016-78607-P). SR and AP are also supported by the Copernicus Marine Environment Monitoring Service (CMEMS) MedSUB project. EM is supported by a post-doctoral grant from the Conselleria d'Educació, Cultura i Universitats del Govern de les Illes Balears (Mallorca, Spain) and the European Social Fund. AC is a FNRS researcher under the FNRS BENTHOX project (Convention T.1009.15). The altimeter products were produced by Ssalto/Duacs and distributed by CMEMS. The profiling floats and some drifters were contributed by the Argo-Italy program. The authors are in debt with A. Massanet, F. Margirier, M. Palmer, C. Castilla, P. Balaguer and for their efficient work and implication during the AlborEx cruise. We also thank M. Menna, G. Notarstefano and A. Bussani for their help with the drifter and float data processing and the production of some figures. This article was initiated during a research visit of the first two authors to Woods Hole Oceanographic Institution.
    Keywords: Mesoscale ; Submesoscale ; Ocean front ; Western Mediterranean ; Integrated multidisciplinary ocean observations ; Multiplatform ; Numerical simulations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Centurioni, L. R., Turton, J., Lumpkin, R., Braasch, L., Brassington, G., Chao, Y., Charpentier, E., Chen, Z., Corlett, G., Dohan, K., Donlon, C., Gallage, C., Hormann, V., Ignatov, A., Ingleby, B., Jensen, R., Kelly-Gerreyn, B. A., Koszalka, I. M., Lin, X., Lindstrom, E., Maximenko, N., Merchant, C. J., Minnett, P., O'Carroll, A., Paluszkiewicz, T., Poli, P., Poulain, P., Reverdin, G., Sun, X., Swail, V., Thurston, S., Wu, L., Yu, L., Wang, B., & Zhang, D. Global in situ observations of essential climate and ocean variables at the air-sea interface. Frontiers in Marine Science, 6, (2019): 419, doi: 10.3389/fmars.2019.00419.
    Description: The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.
    Description: LC, LB, and VH were supported by NOAA grant NA15OAR4320071 and ONR grant N00014-17-1-2517. RL was supported by NOAA/AOML and NOAA’s Ocean Observation and Monitoring Division. NM was partly supported by NASA grant NNX17AH43G. IK was supported by the Nordic Seas Eddy Exchanges (NorSEE) funded by the Norwegian Research Council (Grant 221780). DZ was partly funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. RJ was supported by the USACE’s Civil Works 096×3123.
    Keywords: Global in situ observations ; Air-sea interface ; Essential climate and ocean variables ; Climate variability and change ; Weather forecasting ; SVP drifters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C04004, doi:10.1029/2007JC004148.
    Description: In this paper we present an application of a variational method for the reconstruction of the velocity field in a coastal flow in the central Adriatic Sea, using in situ data from surface drifters and outputs from the ROMS circulation model. The variational approach, previously developed and tested for mesoscale open ocean flows, has been improved and adapted to account for inhomogeneities on boundary current dynamics over complex bathymetry and coastline and for weak Lagrangian persistence in coastal flows. The velocity reconstruction is performed using nine drifter trajectories over 45 d, and a hierarchy of indirect tests is introduced to evaluate the results as the real ocean state is not known. For internal consistency and impact of the analysis, three diagnostics characterizing the particle prediction and transport, in terms of residence times in various zones and export rates from the boundary current toward the interior, show that the reconstruction is quite effective. A qualitative comparison with sea color data from the MODIS satellite images shows that the reconstruction significantly improves the description of the boundary current with respect to the ROMS model first guess, capturing its main features and its exchanges with the interior when sampled by the drifters.
    Description: Four of the authors are supported by the Office of Naval Research, V.T. and A.G. under grants N00014-05-1-0094 and N00014-05-1-0095, P.M.P. under grant N00014-03-1-0291, and S.C. under grant N00014-05-1-0730. CNR-ISMAR activity was partially supported by P.O.R. ‘‘CAINO’’ (Regione Puglia), VECTOR (Italian MIUR) project, and ECOOP (EU project).
    Keywords: Coastal circulation ; Flow reconstruction ; Lagrangian analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tarry, D., Ruiz, S., Johnston, T., Poulain, P., Özgökmen, T., Centurioni, L., Berta, M., Esposito, G., Farrar, J., Mahadevan, A., & Pascual, A. Drifter observations reveal intense vertical velocity in a surface ocean front. Geophysical Research Letters, 49(18), (2022): e2022GL098969, https://doi.org/10.1029/2022gl098969.
    Description: Measuring vertical motions represent a challenge as they are typically 3–4 orders of magnitude smaller than the horizontal velocities. Here, we show that surface vertical velocities are intensified at submesoscales and are dominated by high frequency variability. We use drifter observations to calculate divergence and vertical velocities in the upper 15 m of the water column at two different horizontal scales. The drifters, deployed at the edge of a mesoscale eddy in the Alboran Sea, show an area of strong convergence (urn:x-wiley:00948276:media:grl64766:grl64766-math-0001(f)) associated with vertical velocities of −100 m day−1. This study shows that a multilayered-drifter array can be an effective tool for estimating vertical velocity near the ocean surface.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative CALYPSO under program officers Terri Paluszkiewicz and Scott Harper. The authors' ONR Grant No. are as follows: DT, SR, AM, and AP N000141613130, TMSJ N000146101612470, PP N000141812418, TO N000141812138, LRC N000141712517, and N00014191269, MB and GE N000141812782 and N000141812039, and JTF N000141812431.
    Keywords: Drifters ; Vertical velocity ; Submesoscale ; Kinematic properties ; Fronts ; Alboran Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...