ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate forcing  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Global Change Biology 12 (2006): 1595-1607, doi:10.1111/j.1365-2486.2006.01181.x.
    Description: We examined the growth rate of the circumpolar Greenland Cockle (Serripes groenlandicus) over a period of 20 years (1983-2002) from Rijpfjord, a high-Arctic fjord in northeast Svalbard (80º10´N, 22°15´E). This period encompassed different phases of large-scale climatic oscillations with accompanying variations in local physical variables (temperature, atmospheric pressure, precipitation, sea ice cover), allowing us to analyze the linkage between growth rate, climatic oscillations, and their local physical and biological manifestations. Standard Growth Index (SGI), an ontogenetically-adjusted measure of annual growth, ranged from a low of 0.27 in 2002 up to 2.46 in 1996. Interannual variation in growth corresponded to the Arctic Climate Regime Index (ACRI), with high growth rates during the positive ACRI phase characterized by cyclonic ocean circulation and a warmer and wetter climate. Growth rates were influenced by local manifestations of the ACRI: positively correlated with precipitation and to a lesser extent negatively correlated with atmospheric pressure. A multiple regression model explains 65% of the variability in growth rate by the ACRI and precipitation at the nearest meteorological station. There were, however, complexities in the relationship between growth and physical variables, including an apparent 1-year lag between physical forcing changes and biological response. Also, when the last 4 years of poor growth are excluded, there is a very strong negative correlation with ice cover on a pan-arctic scale. Our results suggest that bivalves, as sentinels of climate change on multi-decadal scales, are sensitive to environmental variations associated with large-scale changes in climate, but that the effects will be determined by changes in environmental parameters regulating marine production and food availability on a local scale.
    Description: This research was supported in part by the Norwegian Research Council, NORDKLIMA Program (150356-S30 and 151815-S30 to MLC), the U.S. National Science Foundation Offices of Polar Programs (OPP-0138596, OPP-0222423 to WGA) and Ocean Sciences (OCE-0215905 to SRT), the BBVA Foundation in Madrid (to MG), and with funds from the Howard Hughes Medical Institute through Bates College.
    Keywords: Arctic Climate Regime Index ; Serripes groenlandicus ; Bivalve growth ; Arctic ; Svalbard ; Benthic community ; Benthos ; Climate forcing
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 384318 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...