ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 21 (1995), S. 61-79 
    ISSN: 1573-0662
    Keywords: ClO ; HCl ; ozone loss
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We call attention to the likely importance of the potential reaction OH+ClO→HCl+O2. It may only be a minor channel for the reaction of OH with ClO, which is often ignored in models, but if it occurs it considerably increases the rate of recovery of HCl after an air parcel has encountered a polar stratospheric cloud (PSC). The net effect of this reaction on the ozone concentration depends on the relative HCl concentration and whether the air parcel is in a PSC. When an air parcel is in a PSC and the HCl concentration is less than the sum of the HOCl and ClONO2 concentrations, heterogeneous ClO x production is rate limited by the production of HCl. Under these conditions the reaction allows HCl to be reprocessed more rapidly by the heterogeneous reactions of HCl with HOCl and ClONO2. This allows high ClO x concentration to be maintained for longer, and at a slightly higher level, than would otherwise be possible which in turn leads to more ozone depletion. When there are PSCs but HCl is in excess, or outside of the PSC regions (i.e. during the recovery phase), the reaction will always reduce the ClO/HCl ratio and hence slightly reduce the ozone loss.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0662
    Keywords: ClO ; Fourier transform infrared
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Infrared absorption features due to ClO in the lower stratosphere have been identified from groundbased solar absorption spectra taken from Aberdeen, U.K. (57° N, 2° W) on 20 January 1995. A vertical column abundance of 3.42 (±0.47)×1015 molec cm-2 has been derived from 13 independent absorption features in the P and R branches of the (0–1) vibration-rotation band of 35ClO, spanning the spectral region 817–855 cm-1. The observed absorption features are consistent with very high levels of ClO (approximately 2.6 parts per billion by volume (ppbv)) in the altitude range 16–22 km. A comparison of this profile with a 3D chemical transport model profile indicates the observation was made inside the polar vortex and shows good qualitative agreement but the model underestimates the concentrations of ClO. Simultaneous measurements of other species were made including HCl, HF and ClONO2. These columns yield a value for HCl+ClONO2+ClO of 7.02±0.65×1015 molec cm-2. This is lower than the total inorganic chlorine (ClO y ) column of 10.7±1.6×1015 molec cm-2 estimated from mean measured (HCl+ClONO2)/HF ratios together with in-vortex HF measurements. The discrepancy is probably due to significant amounts of the ClO dimer (Cl2O2) in the lower part of the stratosphere. The measurements of highly elevated levels of ClO are used to estimate O3 loss rates at the 400, 475 and 550 K levels making assumptions about the probable distribution of ClO and Cl2O2. These are compared with loss rates derived from ozone sonde data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in theMBC value does not necessarilymatch a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate.
    Keywords: Meteorology and Climatology; Geophysics
    Type: GSFC-E-DAA-TN54829 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 119; 5; 2555–2573
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...