ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Shock waves 5 (1995), S. 33-45 
    ISSN: 1432-2153
    Keywords: Oscillatory jet ; Morphological transformation of shock ; Finite volume-FCT scheme ; Unstructured time-dependent adaptive mesh
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract Highly complicated shock wave dynamics has been numerically calculated by solving the Euler equations for a circular shock tube suddenly expanded three times of the original tube diameter atx=0. Shock waves of different shock Mach number,M s =1.5 and 2.0, have produced remarkably distinct blast jet structures. A planar shock wave took its final form after the blast by repeated Mach reflections of the blast wave: the first one at the wall and the second one at the central axis. The central Mach disc overtook and merged with the annular Mach stem before the planar shock wave was formed. In contrast to the blast wave which would propagate spherically in an open space, the present blast wave undergoes complex morphological transformation in the restricted flow passage, resulting in an unstable and oscillatory blast jet structure of highly rotational nature. The slipstream tube emanating from the shock tube exit corner decomposed into a chain of small vortex rings that interacted with the barrel shock of the jet, which caused periodic collapse of the jet structure. The finite volume-FCT formulation equipped with the time-dependenth-refinement adaptive unstructured triangular mesh technique in the present paper has contributed to resolution of the intricate physical discontinuities developing in the blast flow fields.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 463-474 
    ISSN: 0271-2091
    Keywords: Circular cylinder ; Shedding patterns ; Shedding frequency modes ; Integral series condition ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The unsteady incompressible Navier-Stokes equations have been accurately solved for the laminar flow past a circular cylinder in the Reynolds number range 50-200. A direct elliptic solver called the SEVP is used to rapidly advance the streamfunction in time, facilitating the overall convergence to the fully periodic or quasi-steady state. A new integral-series method is developed for the far-field streamfunction condition on a finite two-dimensional computational domain. The use of fourth-order Hermitian relations for the convection terms in the conservation-form vorticity transport equation has also contributed to the good comparison of the present results with the earlier experimental data. The vortex-shedding patterns visualized by the experimentalist are numerically reproduced here in the given Reynolds number range. Discussions that may be helpful in interpreting the behaviour of the shedding frequency are presented in the main text.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...