ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-25
    Description: In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501432/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501432/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tresini, Maria -- Warmerdam, Daniel O -- Kolovos, Petros -- Snijder, Loes -- Vrouwe, Mischa G -- Demmers, Jeroen A A -- van IJcken, Wilfred F J -- Grosveld, Frank G -- Medema, Rene H -- Hoeijmakers, Jan H J -- Mullenders, Leon H F -- Vermeulen, Wim -- Marteijn, Jurgen A -- 10-0594/Worldwide Cancer Research/United Kingdom -- 233424/European Research Council/International -- 340988/European Research Council/International -- P01 AG017242/AG/NIA NIH HHS/ -- England -- Nature. 2015 Jul 2;523(7558):53-8. doi: 10.1038/nature14512. Epub 2015 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands. ; Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands. ; Erasmus MC Proteomics Center, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Erasmus Center for Biomics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26106861" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/physiology ; Ataxia Telangiectasia Mutated Proteins/*metabolism ; Cell Line ; Chromatin/metabolism ; DNA Damage/*physiology ; DNA-Directed RNA Polymerases/metabolism ; Enzyme Activation ; Humans ; *Signal Transduction ; Spliceosomes/*metabolism ; Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-15
    Description: Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raj, V Stalin -- Mou, Huihui -- Smits, Saskia L -- Dekkers, Dick H W -- Muller, Marcel A -- Dijkman, Ronald -- Muth, Doreen -- Demmers, Jeroen A A -- Zaki, Ali -- Fouchier, Ron A M -- Thiel, Volker -- Drosten, Christian -- Rottier, Peter J M -- Osterhaus, Albert D M E -- Bosch, Berend Jan -- Haagmans, Bart L -- England -- Nature. 2013 Mar 14;495(7440):251-4. doi: 10.1038/nature12005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23486063" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchioles/cytology ; COS Cells ; Cercopithecus aethiops ; Chiroptera ; Coronavirus/*classification/*metabolism ; Coronavirus Infections/epidemiology/genetics/metabolism/virology ; Dipeptidyl Peptidase 4/genetics/*metabolism ; Epithelial Cells/virology ; Host Specificity ; Humans ; Molecular Sequence Data ; Receptors, Virus/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...