ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chlamydomonas  (1)
  • Chlorella vulgaris  (1)
  • Membrane potential  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Acidic compartments ; Chlorella vulgaris ; Chloroquine ; Compartmentation ; Inorganic phosphate ; Intracellular pH ; in vivo nuclear magnetic resonance ; Neutral red ; Unicellular algae ; Vacuoles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Acidic inorganic phosphate (Pi) pool (pH around 6) was detected besides the cytoplasmic pool in intact cells of Chlorella vulgaris 11h by 31P-in vivo nuclear magnetic resonance (NMR) spectroscopy. It was characterized as acidic compartments (vacuoles) in combination with the cytochemical technique; staining the cells with neutral red and chloroquine which are known as basic reagents specifically accumulated in acidic compartments. Under various conditions, the results obtained with the cytochemical methods were well correlated with those obtained from in vivo NMR spectra; the vacuoles were well developed in the cells at the stationary growth phase where the acidic Pi signal was detected. In contrast, cells at the logarithmic phase in which no acidic Pi signal was detected contained only smaller vesicles that accumulated these basic reagents. No acidic compartment was detected by both cytochemical technique and 31P-NMR spectroscopy when the cells were treated with NH4OH. The vacuolar pH was lowered by the anaerobic treatment of the cells in the presence of glucose, while it was not affected by the external pH during the preincubation ranging from 3 to 10. Possible vacuolar functions in unicellular algae especially with respect to intracellular pH regulation are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Chitin fragments ; Elicitor ; Membrane potential ; N-Acetylchitooligosaccharides ; Rice suspension culture ; Signal transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary N-acetylchitooligosaccharides (fragments of chitin) elicit the production of phytoalexin in suspension-cultured rice cells. This oligosaccharide elicitor induced rapid and transient membrane depolarization at sub-nanomolar concentrations. Only the oligomers with a certain degree of polymerization were active, while deacetylated chitooligosaccharides caused no effect. Such specificity coincided well with that for the elicitor activity, suggesting possible involvement of this transient change in membrane potential as one of the initial signals in the signal transduction sequence for the activation of defense responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Chlamydomonas ; Pyrenoid ; Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) ; Stroma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (1∶1) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...