ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-11-30
    Description: Abstract
    Description: This dataset contains petrophysical, geochemical, and mineralogical data from a drilling core from the Coastal Cordillera, Chile. The drilling campaign in the semi-arid field site Reserve Santa Gracia was conducted in the framework of the “EarthShape” project (DFG SPP1803) to study deep weathering along a climate gradient. Previous studies in this area found that the weathering front is located much deeper than expected (Oeser et al., 2018). To explore the weathering profile and the depth of the weathering front, we performed various geochemical, petrophysical, and mineralogical analyses. The drilling campaign was conducted in March and April 2019, using the wireline drilling method with a standard industry truck-mounted PQ3-sized (85 mm core diameter, 123 mm hole diameter) rotary drilling rig (Sondajes Araos E.I.R.L.). A detailed description of the drilling activities is given in Krone et al. (2021). The retrieved core runs with a maximum length of 1.5 m were drilled using potable water, with added contamination control tracer for further microbiological analyses of the rock. As basis for our detailed study of deep weathering we determined the porosity, density, specific surface area, elemental composition, mineralogical composition, Fe oxidation, and the degree of weathering from chemical depletion, volumetric strain, and the weathering rate using the in situ cosmogenic nuclide beryllium-10 (10Be).
    Keywords: critical zone ; rock fracturing ; rock weathering ; compound material 〉 igneous material 〉 igneous rock ; compound material 〉 igneous material 〉 igneous rock 〉 phaneritic igneous rock 〉 granitoid ; compound material 〉 igneous material 〉 intermediate composition igneous material 〉 intermediate composition igneous rock 〉 dioritoid 〉 monzodioritic rock ; compound material 〉 igneous material 〉 intermediate composition igneous material 〉 intermediate composition igneous rock 〉 dioritoid 〉 monzodioritic rock 〉 quartz monzodiorite ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 CHEMICAL WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS 〉 IGNEOUS ROCK PHYSICAL/OPTICAL PROPERTIES ; industrial process 〉 drilling ; land 〉 natural area 〉 terrestrial area 〉 arid land ; lithosphere 〉 earth's crust 〉 fault
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-30
    Description: Abstract
    Description: We compiled available information for burrowing animals in Chile in two tables: "2020-042_Uebernickel-et-al_Vertebrates" and "2020-042_Uebernickel-et-al_Invertebrates". A discussion about burrowing vertebrates and invertebrates and the effect of the communities at selected sites in arid to humid Chile is given in Übernickel et al. (in review): Quantification of animal burrowing volumes on hillslopes along a climate gradient, Chile. The purpose of these tables is to provide an overview of burrowing vertebrates and invertebrate species in Chile. The degree of known details of their natural history varies and is often minimal. For invertebrates, the majority of the published work is taxonomic or descriptive that hardly encounter biologic or ecologic aspects of the respective species. The geographic distribution of most invertebrate species remains largely unknown, as they have been topic of single investigations at specific research sites in Chile. The tables are intended as starting point for follow up research. Quantification of distributional ranges, density, excavation rates, burrow or gallery dimensions and further parameters of these species, is important to quantify the biotic influence they have on a landscape level. From publications mostly treating single species, we have compiled this comprehensive dataset of 45 digging or soil-moving vertebrate and 345 invertebrate species. It includes a list of species names with morphological digging adaptations and species observed to dig. In vertebrates excavating behavior is documented for mammals, lizards and birds. In invertebrates, excavating behavior is mentioned for Chilean spiders, scorpions, camel spider, beetles, cicadas, wasps, bees, ants, a termite and antlions. Chile is characterized by an endemic fauna, especially true for arthropods, with limited distributional ranges. Currently, these largely still unknown species are under thread of extinction by the destruction of habitats, desertification and climate change. We encourage specialists to add information to this first compilation.
    Keywords: excavation rate ; Atacama Desert ; mammals ; rodents ; burrowing spider ; burrowing beetle ; burrowing scorpion ; burrowing bee ; burrowing wasp ; South America ; Chile ; Cordillera de la Costa ; National Park Pan de Azúcar ; Santa Gracia ; National Park La Campana ; National Park Nahuelbuta ; EarthShape ; geomorphology ; bioturbation ; ecosystem engineer ; soil erosion ; EARTH SCIENCE 〉 BIOLOGICAL CLASSIFICATION 〉 ANIMALS/INVERTEBRATES ; EARTH SCIENCE 〉 BIOLOGICAL CLASSIFICATION 〉 ANIMALS/VERTEBRATES 〉 MAMMALS 〉 RODENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-13
    Description: Abstract
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota” (www.earthshape.net) installed three meteorological stations at an elevational gradient in the National Park La Campana, Chile, in the sector Ocoa, within one catchment, that is one of the four EarthShape core research sites. They are located at a valley position, at the slope and the crest of the catchment. For reference, the valley station is neighbouring a weather station (Campbell Scientific) that the EarthShape project has installed earlier, in 2016 (Übernickel et al., 2020). The other two weather stations are installed on higher elevations. The weather stations are intended to provide baseline meteorological data along the elevational gradient within the La Campana catchment. Each station is configured to include sensors that record air temperature, relative humidity, barometric pressure as well as total solar radiation at 2 m height; precipitation at 1 m height. The data recording started in March 2019. This publication provides raw data as downloaded from the three stations, appended to one single *.xlsx file per station. The data is measured in 30 minutes intervals. The full description of the data and methods is provided in the data description file.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022; https://www.earthshape.net/) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: South America ; Chile ; Coastal Cordillera ; National Parc La Campana ; EarthShape ; radiation ; temperature ; precipitation ; pressure ; humidity ; weather station ; METER group ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC RADIATION 〉 SOLAR RADIATION ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC TEMPERATURE 〉 AIR TEMPERATURE ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC WATER VAPOR 〉 HUMIDITY ; EARTH SCIENCE 〉 ATMOSPHERE 〉 PRECIPITATION
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The DFG Priority Program 1803 “EarthShape” (www.earthshape.net) investigates Earth surface shaping by biota. As part of this project, we present Light Detection and Ranging (LiDAR) data of land surface areas for the four core research sites of the project. The research sites are located along a latitudinal gradient between ~26 °S and ~38 °S in the Chilean Coastal Cordillera. From north to south, the names of these sites are: National Park Pan de Azúcar; Private Reserve Santa Gracia; National Park La Campana; and National Park Nahuelbuta. The three datasets contain raw 3D point cloud data captured from an airborne LiDAR system, and the following derivative products: a) digital terrain models (DTM, sometimes also referred to as DEM [digital elevation model]) which are (2.5D) raster datasets created by rendering only the LiDAR returns which are assumed to be ground/bare-earth returns and b) digital surface models (DSM) which are also 2.5D raster datasets produced by rendering all the returns from the top of the Earth’s surface, including all objects and structures (e.g. buildings and vegetation). The LiDAR data were acquired in 2008 (southernmost Nahuelbuta [NAB] catchment), 2016 (central La Campana [LC] catchment) and 2020 (central Santa Gracia [SGA] catchment). Except for Nahuelbuta (data already was available from the data provider from a previous project), the flights were carried out as part of the "EarthShape" project. The LiDAR raw data (point cloud/ *.las files) were compressed, merged (as *.laz files) and projected using UTM 19 S (UTM 18 S for the southernmost Nahuelbuta catchment, respectively) and WGS84 as coordinate reference system. A complementary fourth dataset for the northernmost site in the National Park Pan de Azúcar, derived from Uncrewed Aerial Vehicle (UAV) flights and Structure from Motion (SfM) photogrammetry, is expected to be obtained during the first half of 2022 and will be added to the above data set.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions. For more information visit: www.earthshape.net
    Keywords: 3D point cloud ; LiDAR scanner ; Elevation Models ; EarthShape ; Chile ; Coastal Cordillera ; Private Reserve Santa Gracia ; National Park La Campana ; National Park Nahuelbuta ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Altimeters 〉 Lidar/Laser Altimeters 〉 AIRBORNE LASER SCANNER ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TERRAIN ELEVATION ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TOPOGRAPHICAL RELIEF ; EARTH SCIENCE 〉 SPECTRAL/ENGINEERING 〉 LIDAR ; EARTH SCIENCE SERVICES 〉 MODELS 〉 LAND SURFACE MODELS ; Models/Analyses 〉 DEM ; radiation 〉 laser
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-28
    Description: Abstract
    Description: The data consists of four vascular plant species lists, one per study site. The site selection is based on the four study areas of the DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota” (www.earthshape.net), namely: arid climate National Park Pan de Azúcar, semi-arid climate Private Reserve Santa Gracia, mediterranean climate National Park La Campana and humid-temperate climate National Park Nahuelbuta in Chile, South America. Each list is a table with (mostly) terrestrial vascular plant species names that have been reported in a variety of sources at the selected sites and the corresponding administrative or biogeographical regions of Chile. The available literature sources varied from specific national park flora lists to Chilean flora books and catalogues and thus, the present lists represent a potential vegetation for the EarthShape study areas. Each table includes the plants’ Latin name, clade taxonomy, the plant growth form as well as the origin. The taxonomy of the vegetation species was updated to the taxonomic information available up to August 2023 from Chilean and South American vascular flora lists.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022; https://www.earthshape.net/) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: EarthShape ; Chile ; Coastal Cordillera ; National Park Pan de Azúcar ; Private Reserve Santa Gracia ; National Park La Campana ; National Park Nahuelbuta ; vascular plant species ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 DECIDUOUS VEGETATION ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 DOMINANT SPECIES ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 PLANT CHARACTERISTICS ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 VEGETATION COVER ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 VEGETATION SPECIES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-09
    Description: Abstract
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota” (www.earthshape.net, short description of the project below) installed a meteorological station network consisting of four stations between ~26 °S to ~38 °S in the Coastal Cordillera of Chile, South America. The stations are intended to provide baseline meteorological data along the climate and ecological gradient investigated in the EarthShape program. The stations are located in the EarthShape study areas, encompassing desert, semi-desert, mediterranean, and temperate climate zones. Each station is configured to include sensors that record precipitation at ground level, radiation at 2.8 m height, wind at 3 m height, 25 cm depth soil temperature, soil water content and bulk electrical conductivity, 2 m air temperature and relative humidity, and barometric pressure at 30-minute intervals. The data recording started in March/April 2016. The EarthShape project runs until December 2021. Data collection will continue until that date, and potentially longer depending on available funds. This publication provides two sets of data: raw data and processed data. The raw data contains 2 file types per meteorological station: (1) all measured parameters of the whole dataset measured in 30 minutes intervals as downloaded from the station. Furthermore, we provide (2) one table per station of high-resolution precipitation events, measured in 5 min. intervals that were triggered during rain events at each station. The processed data consists of a continuous timeseries of observations since the activation of each station. The processing consists of the exclusion of erroneous data, caused by maintenance of the weather-stations and sporadic malfunction of sensors detected during data screening. The excluded data is communicated in a logfile (excel table), comments from data screening, solar eclipse and others are summarized in history files (ASCII ). the full description of the data and methods is provided in the data description file (Data description file).
    Description: Other
    Description: "EarthShape - Earth Surface Shaping by Biota" bridges between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the distant geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: South America ; Chile ; Cordillera de la Costa ; National Park Pan de Azúcar ; National Park Nahuelbuta ; National Park La Campana ; Private Reserve Santa Gracia ; EarthShape ; Campbell scientific ; radiation ; wind ; soil ; temperature ; precipitation ; pressure ; humidity ; weather station ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC RADIATION 〉 SOLAR RADIATION ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC TEMPERATURE 〉 AIR TEMPERATURE ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC WATER VAPOR 〉 HUMIDITY ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC WINDS 〉 SURFACE WINDS 〉 WIND SPEED/WIND DIRECTION ; EARTH SCIENCE 〉 ATMOSPHERE 〉 PRECIPITATION
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-07
    Description: Abstract
    Description: The Chilean Coastal Cordillera features a spectacular climate and vegetation gradient, ranging from arid and unvegetated areas in the north to humid and forested areas in the south. The DFG Priority Program "EarthShape" (Earth Surface Shaping by Biota) uses this natural gradient to investigate how climate and biological processes shape the Earth's surface. We explored the critical zone, the Earth's uppermost layer, in four key sites located in desert, semidesert, mediterranean, and temperate climate zones of the Coastal Cordillera, with the focus on weathering of granitic rock. Here, we present first results from four ~2m-deep regolith profiles to document: (1) architecture of weathering zone; (2) degree and rate of rock weathering, thus the release of mineral-derived nutrients to the terrestrial ecosystems; (3) denudation rates; and (4) microbial abundances of bacteria and archaea in the saprolite. From north to south, denudation rates from cosmogenic nuclides are ~10 t km-2 yr-1 at the arid Pan de Azúcar site, ~20 t km-2 yr-1 at the semi-arid site of Santa Gracia, ~60 t km-2 yr-1 at the mediterranean climate site of La Campana, and ~30 t km-2 yr-1 at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental depletion or enrichment increases from north (~26 °S) to south (~38 °S) in these horizons. Differences in the degree of chemical weathering, quantified by the chemical depletion fraction (CDF), are significant only between the arid and sparsely vegetated site and the other three sites. Differences in the CDF between the sites, and elemental depletion within the sites are sometimes smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean Coastal Cordillera. This dataset confirms climatic controls on weathering and denudation rates and provides prerequisites to quantify the role of biota in future studies. The data are supplementary material to Oeser et al. (2018). All samples are assigned with International Geo Sample Numbers (IGSN), a globally unique and persistent Identifier for physical samples. The IGSNs are provided in the data tables and link to a comprehensive sample description in the internet. The content of the eight data tables is: Table S1: Catena properties of the four primary EarthShape study areas. Table S2: Major and selected trace element concentration for bedrock samples. Table S3 Normative modal abundance of rock-forming minerals. Table S4: Major and selected trace element concentration for regolith samples and dithionite and oxalate soluble pedogenic oxides. Table S5: Weathering indices CDF and CIA, and the mass transfer coefficients (τ) for major and trace elements along with volumetric strain (ɛ). Table S6: Chemical weathering and physical erosion rates Table S7: Relative microbial abundances in saprolite of the four study areas. Table S8: Uncorrected major and trace element concentration. The data tables are provided as one Excel file with eight spreadsheets, as individual tables in .csv format in a zipped archive and as printable PDF versions in a zipped archive.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022) bridges between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the distant geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.
    Keywords: denudation ; microbial abundance ; Chile ; climate ; National Parc Pan de Azucar ; Private Reserve Santa Gracia ; National Parc La Campana ; National Parc Nahuelbuta ; Coastal Cordillera ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 WEATHERING ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 MICROFLORA ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 SOIL CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...