ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.
    Keywords: Space Sciences (General); Nonmetallic Materials; Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN9717 , AIAA Thermophysics Conference; Jun 24, 2013 - Jun 27, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: I. When seeking to understand ablator microstructure and morphology there are several useful techniques A. SEM 1) Visual characteriza3on at various length scales. 2) Chemical mapping by backscatter or x-ray highlights areas of interest. 3) Combined with other techniques (density, weight change, chemical analysis) SEM is a powerful tool to aid in explaining thermo/structural data. B. ASAP. 1) Chemical characteriza3on at various length scales. 2) Chemical mapping of pore structure by gas adsorption. 3) Provides a map of pore size vs. pore volume. 4) Provided surface area of exposed TPS. II. Both methods help characterize and understand how ablators react with other chemical species and provides insight into how they oxidize.
    Keywords: Chemistry and Materials (General)
    Type: ARC-E-DAA-TN3106 , 4th AF/SNL/NASA Ablation Workshop; Mar 01, 2011 - Mar 03, 2011; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...