ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Almahata Sitta (AS) is a polymict breccia mainly composed of variable ureilite lithologies with small amounts of chondritic lithologies [1]. Fe metal is a common accessory phase in ureilites, but our earlier study on Fe metals in one of AS fragments (#44) revealed a unique mineralogy never seen in other ureilites [2,3]. In this abstract we report detailed transmission electron microscopy (TEM) on these metal grains to better understand the thermal history of ureilites. We prepared FIB sections of AS#44 by JEOL JIB-4000 from the PTS that was well characterized by SEM-EBSD in our earlier study [2]. The sections were then observed by STEM (JEOL JEM- 2100F). One of the FIB sections shows a submicron-sized symplectic intergrown texture composed of Fe metal (kamacite), Fe carbide (cohenite), Fe phosphide (schreibersite), and Fe sulfide (troilite). Each phase has an identical SAED pattern in spite of its complex texture, suggesting co-crystallization of all phases. This is probably caused by shock re-melting of pre-existing metal + graphite to form a eutectic-looking texture. The other FIB section is mostly composed of homogeneous Fe metal (93 wt% Fe, 5 wt% Ni, and 2 wt% Si), but BF-STEM images exhibited the presence of elongated lathy grains (approx. 2 microns long) embedded in the interstitial matrix. The SAED patterns from these lath grains could be indexed by alpha-Fe (bcc) while interstitial areas are gamma-Fe (fcc). The elongated alpha-Fe grains show tweed-like structures suggesting martensite transformation. Such a texture can be formed by rapid cooling from high temperature where gamma-Fe was stable. Subsequently alpha-Fe crystallized, but gamma-Fe remained in the interstitial matrix due to quenching from high temperature. This scenario is consistent with very rapid cooling history of ureilites suggested by silicate mineralogy.
    Keywords: Geosciences (General)
    Type: JSC-CN-28663 , Goldschmidt Conference; Aug 25, 2013 - Aug 30, 2013; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: CR chondrites are the group of carbonaceous chondrites that preserve records of formation of their components in the solar nebula. Although they are affected by aqueous alteration, many chondrules and CAIs are well-preserved, suggesting they have experienced little thermal metamorphism. We have been investigating the petrologic variations among the CR chondrites in Japanese-NIPR Antarctic meteorite collection. Especially we focused on the petrology of amoeboid olivine aggregates (AOAs) in order to understand secondary alteration on CR chondrite parent body. AOAs are composed of fine-grained forsteritic olivine and refractory minerals formed by condensation from solar nebula, and can be used as sensitive indicators of secondary alteration processes.
    Keywords: Geosciences (General)
    Type: JSC-CN-40532 , Symposium on Antarctic Meteorites; Dec 05, 2017 - Dec 08, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using -Raman spectroscopy.
    Keywords: Chemistry and Materials (General)
    Type: JSC-CN-33595 , Astrobiology Science Conference 2015 (AbSciCon2015); Jun 15, 2015 - Jun 17, 2015; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Tha Chang sand pits, Nakhon Ratchasima Province and many other sand pits in the area adjacent to the Mun River are characterized by their fluviatile environment in association with mass wasting deposits, along the paleo-river channel and the flood plain of the Mun River. Sediments of these deposits are characterized by clasts of various rock types especially the resistant ones with frequent big tree trunks, logs and wood fragments in different sizes and various stages of transformation from moldering stage to lignification and petrification. Widespread pyritization of the lower horizon suggests strongly reducing environment during burial. The Tha Chang deposits have been received much attention from geoscientists especially paleontologist communities, as they contain fragments of some distinct vertebrate species such as Stegadon sp., hominoid primate, rhinoceros Aceratherium and others. Based on the associated mammal fauna and hominoid fossils, the late Miocene ( 9 - 6 Ma) was given for the time of deposition of this sand and gravel unit. Some other reports believed that sediments and materials of these sand and gravel quarries (pits) were deposited by high-energy flood pulses contemporaneous with the tektites forming event during mid-Pleistocene at c. 0.8 Ma. Interpretation from Palynostratigraphical study suggested that the lower horizon of Tha Chang sand pit was deposited during Pliocene/Pleistocene period and the upper horizons are Pleistoncene/Holocene. It is crystal clear that all the fluviatile sediments including tektites and almost all fossil fragments being deposited in these sand pits were, likely a multiple times reworked materials. Only some old bamboo trees, some old crowling trees and fossils grasses observed on the old river bank are considered in situ. C-14 dating of 5 old wood specimens from Tha Chang Sand Pits, 15 old wood specimens from Chumpuang Sand Pits and one sample of old pottery from a Chumpuang Sand Pit were carried out in the NSF- Arizona AMS Laboratory. Although, there is no sharp boundary between the unconsolidated sedimentary horizons in the pits, C-14 ages obtained from the Tha Chang vary from 34,340 BP at the middle horizon (approx 10 m below ground zero) to 〉49,900 BP at the lower horizon with unknown basal formation (highly pyritized zone approx 20 - 25 m below ground zero). The ages for the Chumpuang vary from 41,700 BP, 〉45,900 BP and 〉49,900 BP from the upper most to the lower most of a broad horizon (approx 8 m to approx 12 m below ground zero). The C-14 age of the pottery collected from layer approximately 5 m below ground zero is 2,514 BP. The nature of fluviatile together with occasional mass wasting characteristics of all sand pits studies suggest the relatively faster depositional rate of the lower horizon which involved more flooding and mass wasting deposits than those of the upper horizons. The apparent of some mixing of the wood ages may indicate reworking and lag deposits nature of the area. The depositional rate of the upper most sand and soil horizon (5 m thick) is approximately 1 m per 500 years which mean both erosion and deposition had played a significant role during that time period. In term of the true age of the formation, we argue that since most of the materials deposited are reworked materials, all ages obtained from fossil fragments could not be the age of sand and gravel formation. Furthermore, the maximum age of all the tektite bearing horizons cannot be older than 0.8 Ma. The oldest C-14 age of 49,900 BP is interpreted as the minimum age of the Tha Chang and related sand pits formation when geomorphology of the area was a lot more hilly and much higher gradient than that of the present day.
    Keywords: Geosciences (General)
    Type: JSC-CN-25942 , 12th Regional Congress on Geology, Mineral, and Energy Resources of Southeast Asia (GEOSEA 2012); Mar 07, 2012 - Mar 08, 2012; Bangkok; Thailand
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx. 20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-39701 , Annual Meeting of The Meteoritical Society; Jul 23, 2017 - Jul 28, 2017; Sante Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Regolith breccias are lithified samples of the regolith that have been fused together by impact shock and thermal metamorphism. In lunar regolith samples, the ratio of trapped 40Ar/36Ar is a useful indicator of antiquity and can be used to model the closure age/lifithication event of the regolith (i.e. the apparent time when Ar became trapped [1]), thus providing an important insight into specific times when that regolith was interacting with the the dynamic inner solar system space environment [2-4].
    Keywords: Geosciences (General)
    Type: JSC-CN-20538 , Noerdlingen 2010: The Ries Crater, the Moon, and the Future of Human Space Exploration; Jun 25, 2010 - Jun 27, 2010; Noerdlingen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Amoeboid Olivine aggregates (AOAs) are irregularly shaped objects commonly observed in carbonaceous chondrites. Because they are composed of fine-grained olivine and Ca-Al-rich minerals, they are sensitive indicators for nebular process and parent body alteration of their parent bodies. Recently an AOA was found in a carbonaceous clast in polymict eucrite LEW 85300. The bulk major element composition of the clast matrix in LEW 85300 suggests a relation to CM, CO and CV chondrites, whereas bulk clast trace and major element compositions do not match any carbonaceous chondrite, suggesting they have a unique origin. Here we characterize the mineralogy of AOA in LEW 85300 and discuss the origin of the carbonaceous clasts. Results and Discussion: The AOA is located in an impact melt vein. Half of the aggregate shows recrystallization textures (euhedral pyroxene and molten metal/FeS) due to impact melting, but the remaining part preserves the original texture. The AOA is composed of olivine, FeS and Mg,Al-phyllosilicate. Individual olivine grains measure 1-8 microns, with Fe-rich rims, probably due to impact heating. Olivines in the AOA are highly forsteritic (Fo95-99), indicating that the AOA escaped thermal metamorphism [4]. Although no LIME (Low-Fe, Mn-Enriched) olivine is observed, forsterite composition and the coexistence of Mg,Al-phyllosilicate suggest that the AOA is similar to those in the Bali-type oxidized CV (CVoxB) and CR chondrites. However, it should be noted that fayalitic olivine, which commonly occurs in CVoxB AOA, is not observed in this AOA. Also, the smaller grain size (〈8 microns) of olivine suggests they may be related to CM or CO chondrites. Therefore, we cannot exclude the possibility that the AOA originated from a unique carbonaceous chondrite.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-35689 , Goldschmidt Conference 2016; Jun 26, 2016 - Jul 01, 2016; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The Almahata Sitta ureilite, derived from asteroid 2008 TC3, consists of many individual fragments recovered from the Nubian dessert strewn field [1]. Like most ureilites, it contains abundant carbon and exhibits examples of disequilibrium textures that record a late reduction event accompanied by rapid cooling (tens of degC/h) from high temperatures (1150-1300 C). Variations in Fe/Mg of silicate minerals are accompanied by variations in Fe/Mn, indicating loss of Fe into metal [2]. In coarser-grained fragments of Almahata Sitta, olivine exhibits irregular high mg# rims in contact with networks of interstitial metal 5- 20 microns in typical thickness. This is a common ureilite texture thought to be driven by the reaction of graphite to a CO gas phase and the concurrent reduction of FeO in olivine to Fe metal, with excess silica going primarily into pyroxene (2MgFeSiO4 + C approaches MgSiO4 + MgSiO3 + 2Fe + CO) [3, see also 4,5,6]. Other fragments of Almahata Sitta exhibit anomalous textures such as fine grain size, high porosity, and abundant graphite. Within these fragments pyroxene locally exhibits high-mg# rims in contact with metal and a discreet silica phase, suggesting that the reduction mechanism MgFeSi2O6 + C approaches MgSiO3 + Fe + SiO2 + CO. Metals in Almahata Sitta are particularly unaltered in comparison to ureilite finds. Variations in minor and trace element composition of this metal might partly result from localized dilution as iron is supplied by reduction of silicates.
    Keywords: Chemistry and Materials (General)
    Type: JSC-CN-18801 , JSC-CN-18799 , 41st annual meeting of the Division of Planetary Sciences of the American Astronomical Society; Oct 04, 2009 - Oct 09, 2009; Puerto Rico, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...