ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient pressures. Soot concentrations were minimized by selecting conditions at low flowrates and low ambient pressures; this allows identification of actual flame sheets associated with blue emissions of CH and CO2. The present modeling effort follows that of Roper and is useful in explaining many of the trends observed.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 129-134; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The interactions between flames spreading over parallel solid sheets of paper are being studied in normal gravity and in microgravity. This geometry provides interesting opportunities to study the interaction of radiative and diffusive transport mechanisms on the spread process. Radiative losses from flames are recognized as an important component of flame spread. These loss mechanisms are changed when the flame interacts with other flames. Most practical heterogeneous combustion processes involve interacting discrete burning fuel elements, consequently, the study of these interactions is of practical significance. Owing largely to this practical importance, flame interactions have been an area of active research, however microgravity research has been largely limited to droplets. Consideration of parallel solid surfaces has been limited to 1-g studies. The parallel spread geometry offers several distinct differences from single sheet spread, the appearance of the internal flame, instabilities of the internal flame, pressure dependence of spread rate and spread rate variation with separation distance. These issues are being studies as part of this program and discussed in this paper.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 429-434; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The Smoke Point In Co-flow Experiment (SPICE) determines the point at which gas-jet flames (similar to a butane-lighter flame) begin to emit soot (dark carbonaceous particulate formed inside the flame) in microgravity. Studying a soot emitting flame is important in understanding the ability of fires to spread and in control of soot in practical combustion systems space. Previous experiments show that soot dominates the heat emitted from flames in normal gravity and microgravity fires. Control of this heat emission is critical for prevention of the spread of fires on Earth and in space for the design of efficient combustion systems (jet engines and power generation boilers). The onset of soot emission from small gas jet flames (similar to a butane-lighter flame) will be studied to provide a database that can be used to assess the interaction between fuel chemistry and flow conditions on soot formation. These results will be used to support combustion theories and to assess fire behavior in microgravity. The Smoke Point In Co-flow Experiment (SPICE) will lead to a o improved design of practical combustors through improved control of soot formation; o improved understanding of and ability to predict heat release, soot production and emission in microgravity fires; o improved flammability criteria for selection of materials for use in the next generation of spacecraft. The Smoke Point In Co-flow Experiment (SPICE) will continue the study of fundamental phenomena related to understanding the mechanisms controlling the stability and extinction of jet diffusion flames begun with the Laminar Soot Processes (LSP) on STS-94. SPICE will stabilize an enclosed laminar flame in a co-flowing oxidizer, measure the overall flame shape to validate the theoretical and numerical predictions, measure the flame stabilization heights, and measure the temperature field to verify flame structure predictions. SPICE will determine the laminar smoke point properties of non-buoyant jet diffusion flames (i.e., the properties of the largest laminar jet diffusion flames that do not emit soot) for several fuels under different nozzle diameter/co-flow velocity configurations. Luminous flame shape measurements would also be made to verify models of the flame shapes under co-flow conditions. The smoke point is a simple measurement that has been found useful to study the influence of flow and fuel properties on the sooting propensity of flames. This information would help support current understanding of soot processes in laminar flames and by analogy in turbulent flames of practical interest.
    Keywords: Chemistry and Materials (General)
    Type: JSC-17962-41
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN57094 , Environmental Research Letters (e-ISSN 1748-9326); 13; 5; 054024; No. 5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We present an overview of state-of-the-art chemistry-climate and chemistry transport models that are used within phase 1 of the Chemistry-Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain inter-model differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN55204 , Geoscientific Model Development (ISSN 1991-959X) (e-ISSN 1991-9603); 10; 2; 639-671
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN55184 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 2; 1091-1114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...