ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 1200-1204 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A study of melting a polymer pellet immersed in a hot silicone oil bath was conducted. The temperature rise at the center of the pellet was recorded. This experiment simulates the conduction melting mechanism of polymer solid pieces mixed in the hot melt inside an extruder screw channel. The pellets immersed in the silicone oil melted quite slowly, taking around one minute to melt a spherical pellet of about 4.5 mm diameter. The heating time could be greatly decreased by stirring the silicone oil to increase the heat transfer from the silicone oil to the pellet. Analysis of the conduction melting mechanism showed that the size reduction of the solid would be most effective in decreasing the heating time.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 1067-1081 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Protein denaturation, common in hydrophobic adsorption systems, causes misinterpretation of adsorption mechanisms, interferes with analysis in analytical chromatography, and complicates the design of large-scale adsorption processes. A detailed adsorption model isolates the effects due to denaturation from those due to mass transfer and intrinsic adsorption kinetics. The model is verified using protein gradient elution data. Simulations establish that typical symptoms of denaturation in frontal and elution chromatogrrams include sensitivity to changes in feed composition, column length, particle size, and operating conditions (feed size, flow rate, and column history). When a denatured species adsorbs irreversibly, the elution chromatogram shows decreasing peak area with increasing incubation time and apparent adsorption hysteresis over repeated cycles. In gradient elution, the peak elution order, resolution, and relative peak height depend highly on modulator properties and operating conditions. Interfering species limit solid-phase induced denaturation by competing for binding sites. Strategies for detecting and minimizing denaturation are proposed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 232-242 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An efficient and economical low-pressure liquid chromatography process has been developed for paclitaxel recovery and purification directly from plant-tissue culture (PTC) broth. PTC broth is first diluted with ethanol to ensure padlitaxel dissolution and then passed through a column packed with a high-capacity polystyrene divinyl-benzene sorbent. A step increase in ethanol concentration in the mobile phase (ethanol:water) is used to concentrate and compress the taxane bands to as high as 29-fold of influent concentrations (about 1 mg/L). A recycle technique is then used to separate the concentrated paclitaxel band from other taxane bands, achieving 95% purity with more than 90% recovery and 99% purity with more than 80% recovery. In this process, the same low-pressure columns are used to capture, concentrate and purify paclitaxel. Theoretical predictions agree closely with the stepwise elution and recycle chromatography data. After validation, simulations are used to explore various design and operating alternatives. Analysis of the alternatives shows that the process cost can be further reduced by using higher feed concentration, larger loading volume, smaller particle size, and optimal gradient and recycle strategies.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 2488-2508 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The concept of standing concentration waves is introduced to derive design equations for continuous moving bed (CMB) processes. For linear isotherm systems, simple equations are derived from the analysis to link product purity and recovery to zone lengths, bed movement velocity, flow rates, column capacity factors, and mass-transfer coefficients. Once product purity, recovery and feed flow rate are specified for a given system, the zone flow rates and bed movement velocity that provide the highest throughput and the lowest solvent consumption can be determined from the solutions. In a given system, there is a trade-off between product purity and throughput. If bed volume and product purities are fixed, the longer the zone lengths, the higher the throughput. Simulations based on a linear driving force model that considers axial dispersion and lumped film and intraparticle diffusion are used to compare the column profiles and effluent histories of CMB and simulated moving bed (SMB). A numerical algorithm is introduced to allow simulation of both CMB and SMB operations using the same program. The comparison shows that the design equations derived for CMB systems are applicable to SMB systems. Finally, the standing wave solutions are used to analyze an experimental SMB system from the literature (Ching et al., 1991). Simulations agree closely with the data and the predictions of the theoretical analysis.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 1685-1696 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Most existing adsorption models do not properly consider steric hindrance effects of preadsorbed solutes. As a consequence, the models often fail to represent the adsorption kinetics and equilibria accurately. In this work, we extend the random sequential adsorption concept for irreversible adsorption to analyze reversible adsorption on a continuous surface and a random site surface. Based on simulation results of these processes, general kinetic equations for one-component adsorption are developed. The equations are used to correlate chromatography frontal curves of lysozyme and isotherm data of ethane adsorption on activated carbon and ethylene adsorption on a molecular sieve. The significance of the equations, as compared with the Langmuir equation, lies not only in their ability to correlate the experimental data more accurately, but in the physical significance of the adsorption parameters such as the maximum adsorption capacity obtained from the correlation. Our study shows that steric hindrance effects alone result in nonlinear Scatchard and Hill plots with negative cooperativity.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 1244-1262 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A generalized parallel pore and surface diffusion model for multicomponent adsorption and liquid chromatography is formulated and solved numerically. Analytical solution for first- and second-order central moments for a pulse on a plateau input is used as benchmarks for the numerical solutions. Theoretical predictions are compared with experimental data for two systems: ion-exchange of strontium, sodium, and calcium in a zeolite and competitive adsorption of two organics on activated carbon. In a linear isotherm region of single-component systems, both surface and pore diffusion cause symmetric spreading in breakthrough curves. In a highly nonlinear isotherm region, however, surface diffusion causes pronounced tailing in breakthrough curves; the larger the step change in concentration, the more pronounced tailing, in contrast to relatively symmetric breakthroughs due to pore diffusion. If only a single diffusion mechanism is assumed in analyzing the data of parallel diffusion systems, a concentration-dependent apparent surface diffusivity or pore diffusivity results; for a convex isotherm, the apparent surface diffusivity increases, whereas the apparent pore diffusivity decreases with increasing concentration. For a multicomponent nonlinear system, elution order can change if pore diffusion dominates for a low-affinity solute, whereas surface diffusion dominates for a high-affinity solute.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 951-963 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Urea hydrolysis by urease immobilized onto ion exchange resins in a fixed-bed reactor has been studied. A modified Michaelis-Menten rate expression is used to describe the pH-dependent, substrate- and product-inhibited kinetics. Ionic equilibria of product and buffer species are included to account for pH changes generated by reaction. An isothermal, heterogeneous plug-flow reactor model has been developed. An effectiveness factor is used to describe the reaction-diffusion process within the particle phase. The procedure for covalent immobilization of urease onto macroporous cation exchangers is described. Urea conversion data are used to estimate kinetic parameters by a simplex optimization method. The best-fitted parameters are then used to predict the outlet conversions and pH values for systems with various inlet pH values, inlet urea and ammonia concentrations, buffers, particle sizes, and spacetimes. Very good agreement is obtained between experimental data and model predictions. This immobilized urease system exhibits quite different kinetic behavior from soluble urease because the pH near the enzyme active sites is different from that of the pore fluid. This effect results in a shift of the optimal pH value of the Vmax (pH) curve from 6.6 (soluble urease) to ca. 7.6 in dialysate solution, and ca. pH 8.0 in 20mM phosphate buffer. The reactor model is especially useful for estimating intrinsic kinetic parameters of immobilized enzymes and for designing urea removal columns.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 37 (1991), S. 555-568 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A versatile reaction-separation (VERSE) model was developed to quantitatively simulate the behavior of chromatographic separations coupled with reactions. Detailed mass transfer and reaction mechanisms are considered. Aggregation data of myoglobin and β-lactoglobulin A verified the model. The effects of concentration, equilibrium distribution, reaction rate, convection rate, particle radius, and relative affinity are shown for a dimerizing system. When the aggregation rate is relatively slow compared with convection and mass transfer rates, the individual forms behave as separate species in frontal, elution, and displacement chromatography. For rapid aggregation rates, the individual forms behave as a single component with an average affinity. The wave asymmetry and increased spreading due to aggregation depend on relative affinity differences. Serious error may result if aggregation is overlooked in parameter estimation using frontal or pulse analysis. The dimensionless group principles developed here are useful in scaling and predicting when peak or wave splitting or merging will occur in reaction chromatography systems.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Propellants, Explosives, Pyrotechnics 20 (1995), S. 11-15 
    ISSN: 0721-3115
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Through the analysis and calculation to the flow field in the solid rocket motor using high-burning-rate propellant, the authors believe that the existence of pressure difference between the inside and outside of the propellant tube causes the propellant crack. In this paper, the design method to eliminate the pressure difference is discussed. The theoretical results were certified by the experimental results.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 23 (1991), S. 151-160 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate constants for the reaction of CN with N2O and CO2 have been measured by the laser dissociation/laser-induced fluorescence (two-laser pump-probe) technique at temperatures between 300 and 740 K. The rate of CN + N2O was measurable above 500 K, with a least-squares averaged rate constant, k = 10-11.8±0.4 exp(-3560 ± 181/T) cm3/s. The rate of CN + CO2, however, was not measurable even at the highest temperature reached in the present work, 743 K, with [CO2] ≤ 1.9 × 1018 molecules/cm3.In order to rationalize the observed kinetics, quantum mechanical calculations based on the BAC-MP4 method were performed. The results of these calculations reveal that the CN + N2O reaction takes place via a stable adduct NCNNO with a small barrier of 1.1 kcal/mol. The adduct, which is more stable than the reactants by 13 kcal/mol, decomposes into the NCN + NO products with an activation energy of 20.0 kcal/mol. This latter process is thus the rate-controlling step in the CN + N2O reaction. The CN + CO2 reaction, on the other hand, occurs with a large barrier of 27.4 kcal/mol, producing an unstable adduct NCOCO which fragments into NCO + CO with a small barrier of 4.5 kcal/mol. The large overall activation energy for this process explains the negligibly low reactivity of the CN radical toward CO2 below 1000 K.Least-squares analyses of the computed rate constants for these two CN reactions, which fit well with experimental data, give rise to \documentclass{article}\pagestyle{empty}\begin{document}$$ k_{{\rm N}_{\rm 2} {\rm O}} \, = \,6.4 \times 10^{- 21} {\rm T}^{{\rm 2}{\rm .6}} \exp (- 1860/{\rm T)cm}^{\rm 3} /{\rm s} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ k_{{\rm C} {\rm O}_{\rm 2}} \, = \,6.1 \times 10^{- 18} {\rm T}^{{\rm 2}{\rm .2}} \exp (- 13530/{\rm T)cm}^{\rm 3} /{\rm s} $$\end{document} for the temperature range 300-3000 K.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...