ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (2)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 56 (1995), S. 65-72 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The accuracy and precision of results obtained from light-scattering detection at two angles (TALLS) for size-exclusion chromatography (SEC) are examined for linear narrow molecular weight distribution polystyrenes between 1,290,000 and 20,000,000 MW and for branched polyesters. The ratio of light-scattering intensities at 15° and 90° is used to calculate weight-average molecular weight, M̄w, and an average root-mean-square radius, r̄gu, equivalent to the z-average radius. A shape for the polymer molecule is assumed and an analytical relationship for the particle-scattering function is required. It is shown that analysis of the data using the particle-scattering function for a random coil is valid for both high molecular weight, linear polystyrenes and long-chain branched polyesters. The radius, r̄gu, is determined with high precision by using the ratio of light-scattering signals, which is insensitive to errors in sample concentration and changes in the eluent flow rate. The correct average radius for the whole polymer is obtained despite using low-efficiency, large-particle diameter SEC columns; however, axial dispersion significantly affects molecular weights and radii calculated at each retention volume that can limit the utility of plots used to deduce polymer conformation. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 56 (1995), S. 211-220 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Multidetector size exclusion chromatography (SEC) is used to simultaneously determine molecular weight and number of reactive end groups per chain (functionality) of poly(tetramethylene glycol)s. Hydroxyl groups are first quantitatively derivatized with phenyl isocyanate, providing an end-group-selective UV-absorbing tag. The number of end groups per chain is then determined from the SEC chromatogram using a UV detector. Molecular weight at each retention volume and the number-average molecular weight of the whole polymer are calculated by four methods involving (1) a concentration detector and a narrow standard log M calibration curve, (2) the UV detector and a narrow standard log M calibration, (3) a viscometry detector and a universal calibration curve, and (4) combined differential viscometry and concentration detectors using a universal calibration curve. The multidetector experiment provides a unique opportunity to assess the accuracy and limitations of each approach on low-molecular-weight polymers. In particular, the effect of end groups on the concentration detector response and the application of universal calibration principles at small molecular sizes are important factors. It is shown that the concentration response can be corrected by a simple relationship between detector response and reciprocal molecular weight. Also, the quality of calibration curves is critical to the calculation of accurate molecular weight. In general, log M calibration curves provide superior results to universal calibration methods. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...