ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 59 (1996), S. 707-717 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In continuation of our goal to implement supercritical fluid (SCF) technology for various applications such as precision cleaning, foaming, and impregnation of materials, a systematic study has been performed involving amorphous polymers. Eleven different polymers of amorphous nature have been subjected to supercritical carbon dioxide (SC CO2) treatment under a wide pressure and temperature range (1000-3000 psi and 25-70°C, respectively). The influence and impact of such treatment on the appearance, weight change, and thermal and mechanical properties were followed systematically. In addition, the effect of treatment conditions and dimension of the samples on weight changes were also monitored. It has been found that amorphous polymers can absorb carbon dioxide to a greater extent than crystalline polymers and, in turn, the phenomenon of plasticization was also very high. In addition to morphology, the polarity of the polymer is also crucial in determining the solubility in carbon dioxide. Comparison was also made with the behavior of crystalline polymers. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 59 (1996), S. 695-705 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Supercritical fluid (SCF) technology involving carbon dioxide is recently receiving wide attention due to its vast potential application in various fields such as cleaning, extraction, synthesis, etc., in addition to its environmental benefits. To fully exploit the use of SCFs in new technologies, it is important to understand how SCFs interact with materials. To this end, we have undertaken a systematic study involving a wide pressure and temperature range to investigate the interaction of supercritical carbon dioxide (SC CO2) with nine different crystalline polymers, namely, substituted and unsubstituted polyethylene (four varieties), polypropylene, nylon 66, poly(ethylene terephthalate), poly(oxymethylene), and poly(vinylidine fluoride). Critical factors such as changes in appearance and weight, temperature, pressure and time of the supercritical fluid treatment, and dimension of samples have been observed. The influence of SC CO2 on the thermal properties of treated polymers has been investigated through TGA analysis. Further, changes in the mechanical properties such as yield strength, ultimate elongation, and modulus of elasticity of the investigated crystalline polymers were also observed. A discussion has been included to show the possible implications of the observed changes in realizing various applications. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 17 (1991), S. 48-56 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: Reactions of O2 and H2O to from thin oxides on Fe, Ti and Ti-modified Fe thin films have been studied by XPS, following O2 and H2O exposure in the range 0-600 L, to form oxides with thicknesses of 〈 40 Å. XPS Iineshape analysis is used, utilizing a special combination of reflection electron energy-loss spectroscopy (REELS) and nonlinear least-squares fitting routines to model the intrinsic and extrinsic energy losses that accompany potoemission for the Ti and Fe 2p lines. During the formation of the thinnest oxides, this approach yields a unique picture of the composition of the oxide, while for the thicker layers, there is little significant difference between this fitting approach and (1) fitting approaches using an integral background approach or (2) direct deconvolution methods using the REELS data. Both Fe and Ti are quite reactive to O2, yielding a surface oxide that is apparently an FeO-dominated FeO/Fe3O4 bilayer on Fe surface oxide that is predominantly TiO2 on the Ti surface. Pure Fe and Ti surfaces are unreactive to H2O. Predosing of thewse surfaces with low levels of O2 (5 L) does not increase the reactivity appreciably toward H2O. Ti dispersed on the Fe surface as an adatom layer, with an equivalent thickness of 3 Å, greatly suppresses the reactivity of Fe toward O2, while the Ti is oxidized primarily to TiO2, In contrast to the pure Ti layers, these Ti adatom layers are quite reactive toward H2O, yielding oxides (no evidence for hydroxide) in a uniform distribution of oxidation states (Ti+2, Ti+3 and Ti+4).
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...