ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 41 (1990), S. 1271-1280 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The cure reaction of an epoxy-novolac molding compound was studied by means of differential scanning calorimetry using the dynamic (i.e., temperature scanning) approach. Based on a modified version of Friedman's method, a procedure aiming at the phenomenological description of cure kinetics was developed. This method was found capable of following satisfactorily the thermokinetics of the molding compound. Our results indicate that the cure reaction is autocatalytic in nature and does not follow simple nth-order kinetics.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 44 (1992), S. 165-172 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The isothermal cure of an epoxy-novolac molding compound was studied by means of differential scanning calorimetry (DSC). The glass transition temperature (Tg) of the molding compound increased in an approximately linear manner with conversion (α) during the major part of the cure process. Predictions of an empirical kinetic scheme (established earlier from dynamic DSC results) compared favorably with the present isothermal results in the absence of vitrification. In combination with the gel point conversion (αgel) determined via dynamic rheological analysis and gravimetric measurements, our DSC results indicated that gelation bears no apparent effect on the rate of cure whereas vitrification retards the cure reaction. Based on the measured αgel, the approximate Tg-α relationship, and the thermokinetic results, the time-temperature-transformation diagram of this molding compound was constructed and discussed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...