ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 1291-1296 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Mixed cultures of bacteria grew in medium containing real s-triazine wastes as nitrogen source. About 80% of the s-triazine waste could be degraded as determined by HPLC and by measurements of dissolved nitrogen. The culture required an added carbon source in order to degrade s-triazines. A temperature optimum near 40°C was observed and a salt concentration above about 4% markedly retarded growth and the degradation of s-triazines. This system was examined as a biological treatment for wastes from syntheses of s-triazines.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 28 (1986), S. 1577-1581 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Mixed cultures of microorganisms immobilized on sand were used to degrade s-triazine-containing industrial wastewater in a fluidized bed reactor. Immobilized cell concentrations of up to 18 g/L volatile suspended solids could be achieved with the s-triazines as sole nitrogen source for growth and carbon sources added at a C—N ratio of about 12. Maximal removal efficiencies of 80% of the s-triazines could be maintained only if (a) the bio-film thickness was limited to avoid oxygen deficiency and (b) the carbon source and complete wastewater (≤50% v/v in the feed) were supplied continuously at a mean hydraulic residence time of ≥20-25 h.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...