ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 443-451 
    ISSN: 0006-3592
    Keywords: osteoblast ; migration ; poly(αhydroxy esters) ; poly(DL-lactic-co-glycolic acid) ; PLGA ; biodegradable polymers ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We investigated the migration of rat calvaria osteoblast populations on poly(α-hydroxy ester) films for up to 14 days to determine effects of substrate composition and culture conditions on the migratory characteristics of osteoblasts. Initial osteoblast culture conditions included cell colonies formed by seeding a high (84,000 cells/cm2) or low (42,000 cells/cm2) density of isolated osteoblasts on the polymer films, and bone tissue cultures formed by plating bone chips directly on the substrates. High density osteoblast colonies cultured and allowed to migrate and proliferate radially on 85:15 poly(DL-lactic-co-glycolic acid) (PLGA) films, 75:25 PLGA films, and tissue culture polystyrene controls demonstrated that the copolymer ratio in the polymer films did not affect the rate of increase in substrate surface area (or culture area) covered by the growing cell colony. However, the rate of increase in culture area was dependent on the initial osteoblast seeding density. Initial cell colonies formed with a lower osteoblast seeding density on 75:25 PLGA resulted in a lower rate of increase in culture area, specifically 4.9 ± 0.3 mm2/day, versus 14.1 ± 0.7 mm2/day for colonies seeded with a higher density of cells on the same polymer films. The proliferation rate for osteoblasts in the high and low density seeded osteoblast colonies did not differ, whereas the proliferation rate for the osteoblasts arising from the bone chips was lower than either of these isolated cell colonies. Confocal and light microscopy revealed that the osteoblast migration occurred as a monolayer of individual osteoblasts and not a calcified tissue front. These results demonstrated that cell seeding conditions strongly affect the rates of osteoblast migration and proliferation on biodegradable poly(α-hydroxy esters). © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 28 (1994), S. 1445-1453 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Rat osteoblasts were cultured on films of biodegradable poly(L-lactic acid) (PLLA), 75:25 poly(DL-lactic-co-glycolic acid) (PLGA), 50:50 PLGA, and poly(glycolic acid) (PGA) for up to 14 days. Osteoblasts attached equally well to all the polymer substrates after 8 h in culture. By day 4 in culture, osteoblasts had exceeded confluency numbers, and their proliferation leveled off by day 7. An increase in alkaline phosphatase (ALP) activity from 1.92 (±0.47) × 10-7 for day 7 to 5.75 (±0.12) × 10-7 μmol/cell per min for day 14 was reported for osteoblasts cultured on 75:25 PLGA, which was comparable to that observed for tissue culture polystyrene (TCPS) controls. The ALP activities expressed by osteoblasts cultured on PLLA, 50:50 PLGA, and PGA films did not significantly increase over time. Collagen synthesis for osteoblasts cultured on all polymer substrates was similar to that of TCPS and did not vary with time. The morphology of cultured osteoblasts was not affected by the continuous degradation of the polymer substrates. These results demonstrate that poly(α-hydroxy esters) can provide a suitable substrate for osteoblast culture and hold promise in bone regeneration by osteoblast transplantation. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 μm, and two different cell seeding densities, 6.83 × 105 cells/cm2 and 22.1 × 105 cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 × 105 cells/cm2 on foams with 300-500 μm pores resulted in a cell density of 4.63 × 105 cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 × 10-7 and 2.91 × 10-6 μmol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 × 105 cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 μm from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(α-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue. © 1997 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9304
    Keywords: poly(α-hydroxy esters) ; biodegradable polymer scaffolds ; osteoblast transplantation ; boye tissue engineering ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Porous biodegradable poly(DL-lactic-co-glycolic acid) foams were seeded with rat marrow stromal cells and implanted into the rat mesentery to investigate in vivo bone formation at an ectopic site. Cells were seeded at a density of 6.83 × 105 cells/cm2 onto polymer foams having pore sizes ranging from either 150 to 300 or 500 to 710 μm and cultured for 7 days in vitro prior to implantation. The polymer/cell constructs were harvested after 1, 7, 28, or 49 days in vivo and processed for histology and gel permeation chromatography. Visual observation of hematoxylin and eosin-stained sections and von Kossa-stained sections revealed the formation of mineralized bonelike tissue in the constructs within 7 days postimplantation. Ingrowth of vascular tissue was also found adjacent to the islands of bone, supplying the necessary metabolic requirements to the newly formed tissue. Mineralization and bone tissue formation were investigated by histomorphometry. The average penetration depth of mineralized tissue in the construct ranged from 190 ± 50 μm for foams with 500-710-μm pores to 370 ± 160 μm for foams with 150-300-μm pores after 49 days in vivo. The mineralized bone volume per surface area and total bone volume per surface area had maximal values of 0.028 ± 0.021 mm (500-710-μm pore size, day 28) and 0.038 ± 0.024 mm (150-300-μm, day 28), respectively. As much as 11% of the foam volume penetrated by bone tissue was filled with mineralized tissue. No significant trends over time were observed for any of the measured values (penetration depth, bone volume/surface area, or percent mineralized bone volume). These results suggest the feasibility of bone formation by osteoblast transplantation in an orthotopic site where not only bone formation from transplanted cells but also ingrowth from adjacent bone may occur. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 36, 1-8 1997.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...