ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • argon plasma treatment  (2)
  • Chemistry  (1)
  • 1
    ISSN: 1572-8978
    Keywords: Surface modification ; argon plasma treatment ; vacuum UV ; carboxylic acid groups ; Langmuir probe measurements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract The mechanism of the immobilization of the surfactant sodium 10-undecenoate (C11(:)) on poly(ethylene) (PE) by means of an argon plasma treatment has been investigated. In particular, the influence of the vacuum ultraviolet (UV) radiation emitted by the argon plasma on the immobilization was studied. For this purpose, PE samples were coated with C11(:) (PE/C11(:) samples) and treated with an argon plasma under different conditions. PE/C11(:) samples were placed inside (glow) and outside (afterglow) the visible region of the plasma. Additionally, polymer samples that were placed in the glow of the plasma were covered with lithium fluoride or quartz crystals. These materials are transparent for electromagnetic radiation with a wavelength longer than 104 and 150 nm, respectively. Derivatization X-ray Photoelectron Spectroscopy was applied to characterize the modified polymer surfaces. It was demonstrated that vacuum UV radiation with a wavelength shorter than 150 nm made a predominant contribution to the process of immobilization. Under certain conditions it was possible to retain about 30% of the functional groups of the initially coated surfactant layer on PE. Furthermore, the UV radiation accounted for etching of PE and PE/C11(:) surfaces and initiated oxidation of the polymer surfaces.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 1829-1846 
    ISSN: 0887-624X
    Keywords: surface modification ; argon plasma treatment ; poly(ethylene) ; poly(propylene) ; poly(cis-butadiene) ; carboxylic acid groups ; XPS ; SSIMS ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In this article, a study on the mechanism of the immobilization of surfactants on polymeric surfaces by means of an argon plasma treatment is described. The unsaturated surfactant sodium 10-undecenoate [C11(:)] and the saturated surfactant sodium dodecanoate (C12) were immobilized on poly(ethylene) (PE), poly(propylene) (PP), and poly(cis-butadiene) (PB) surfaces. This was accomplished by treating polymeric substrates that were coated with C11(:) or C12 with an argon plasma. Derivatization X-ray Photoelectron Spectroscopy (XPS) and Static Secondary Ion Mass Spectrometry (SSIMS) showed that during the plasma treatment surfactants were covalently coupled to the polymeric surfaces. The chemical structure of both the surfactant and the polymeric substrate influenced the immobilization efficiency. At an optimal treatment time of 5 s, about 28 and 6% of the initial amount of carboxylate groups in the precoated C11(:) and C12 layer, respectively, was retained at the PE surface. The immobilization efficiencies of C11(:) and C12 on PP were about 20 and 9%, respectively. The immobilization efficiency of C11(:) and C12 on PB were both about 7%. The results obtained in this study indicate that the immobilization proceeds via a radical mechanism. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1829-1846, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...