ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0570-0833
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-11
    Description: DNA methylation is a major epigenetic modification of the genome that regulates crucial aspects of its function. Genomic methylation patterns in somatic differentiated cells are generally stable and heritable. However, in mammals there are at least two developmental periods-in germ cells and in preimplantation embryos-in which methylation patterns are reprogrammed genome wide, generating cells with a broad developmental potential. Epigenetic reprogramming in germ cells is critical for imprinting; reprogramming in early embryos also affects imprinting. Reprogramming is likely to have a crucial role in establishing nuclear totipotency in normal development and in cloned animals, and in the erasure of acquired epigenetic information. A role of reprogramming in stem cell differentiation is also envisaged. DNA methylation is one of the best-studied epigenetic modifications of DNA in all unicellular and multicellular organisms. In mammals and other vertebrates, methylation occurs predominantly at the symmetrical dinucleotide CpG (1-4). Symmetrical methylation and the discovery of a DNA methyltransferase that prefers a hemimethylated substrate, Dnmt1 (4), suggested a mechanism by which specific patterns of methylation in the genome could be maintained. Patterns imposed on the genome at defined developmental time points in precursor cells could be maintained by Dnmt1, and would lead to predetermined programs of gene expression during development in descendants of the precursor cells (5, 6). This provided a means to explain how patterns of differentiation could be maintained by populations of cells. In addition, specific demethylation events in differentiated tissues could then lead to further changes in gene expression as needed. Neat and convincing as this model is, it is still largely unsubstantiated. While effects of methylation on expression of specific genes, particularly imprinted ones (7) and some retrotransposons (8), have been demonstrated in vivo, it is still unclear whether or not methylation is involved in the control of gene expression during normal development (9-13). Although enzymes have been identified that can methylate DNA de novo (Dnmt3a and Dnmt3b) (14), it is unknown how specific patterns of methylation are established in the genome. Mechanisms for active demethylation have been suggested, but no enzymes have been identified that carry out this function in vivo (15-17). Genomewide alterations in methylation-brought about, for example, by knockouts of the methylase genes-result in embryo lethality or developmental defects, but the basis for abnormal development still remains to be discovered (7, 14). What is clear, however, is that in mammals there are developmental periods of genomewide reprogramming of methylation patterns in vivo. Typically, a substantial part of the genome is demethylated, and after some time remethylated, in a cell- or tissue-specific pattern. The developmental dynamics of these reprogramming events, as well as some of the enzymatic mechanisms involved and the biological purposes, are beginning to be understood. Here we look at what is known about reprogramming in mammals and discuss how it might relate to developmental potency and imprinting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reik, W -- Dean, W -- Walter, J -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1089-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498579" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/metabolism ; Cell Differentiation ; Cloning, Organism ; *DNA Methylation ; Dosage Compensation, Genetic ; Embryo, Mammalian/*metabolism ; *Embryo, Nonmammalian ; *Embryonic and Fetal Development ; Female ; *Gene Expression Regulation, Developmental ; Genomic Imprinting ; Germ Cells/*metabolism ; Male ; Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-01-26
    Description: Epigenetic reprogramming including demethylation of DNA occurs in mammalian primordial germ cells (PGCs) and in early embryos, and is important for the erasure of imprints and epimutations, and the return to pluripotency. The extent of this reprogramming and its molecular mechanisms are poorly understood. We previously showed that the cytidine deaminases AID and APOBEC1 can deaminate 5-methylcytosine in vitro and in Escherichia coli, and in the mouse are expressed in tissues in which demethylation occurs. Here we profiled DNA methylation throughout the genome by unbiased bisulphite next generation sequencing in wild-type and AID-deficient mouse PGCs at embryonic day (E)13.5. Wild-type PGCs revealed marked genome-wide erasure of methylation to a level below that of methylation deficient (Np95(-/-), also called Uhrf1(-/-)) embryonic stem cells, with female PGCs being less methylated than male ones. By contrast, AID-deficient PGCs were up to three times more methylated than wild-type ones; this substantial difference occurred throughout the genome, with introns, intergenic regions and transposons being relatively more methylated than exons. Relative hypermethylation in AID-deficient PGCs was confirmed by analysis of individual loci in the genome. Our results reveal that erasure of DNA methylation in the germ line is a global process, hence limiting the potential for transgenerational epigenetic inheritance. AID deficiency interferes with genome-wide erasure of DNA methylation patterns, indicating that AID has a critical function in epigenetic reprogramming and potentially in restricting the inheritance of epimutations in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965733/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965733/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Popp, Christian -- Dean, Wendy -- Feng, Suhua -- Cokus, Shawn J -- Andrews, Simon -- Pellegrini, Matteo -- Jacobsen, Steven E -- Reik, Wolf -- G0700098/Medical Research Council/United Kingdom -- R37 GM060398/GM/NIGMS NIH HHS/ -- R37 GM060398-11/GM/NIGMS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- England -- Nature. 2010 Feb 25;463(7284):1101-5. doi: 10.1038/nature08829.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20098412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytidine Deaminase/*deficiency/genetics/*metabolism ; *DNA Methylation ; DNA Transposable Elements/genetics ; Embryo, Mammalian/cytology/embryology/metabolism ; Epigenesis, Genetic/genetics ; Exons/genetics ; Female ; *Genome/genetics ; Germ Cells/enzymology/*metabolism ; Introns/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/deficiency/genetics ; Octamer Transcription Factor-3/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-27
    Description: Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show variable cell-to-cell chromosome structures at larger scales. Despite this structural stochasticity, localization of active gene domains to boundaries of chromosome territories is a hallmark of chromosomal conformation. Single-cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organization underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869051/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869051/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagano, Takashi -- Lubling, Yaniv -- Stevens, Tim J -- Schoenfelder, Stefan -- Yaffe, Eitan -- Dean, Wendy -- Laue, Ernest D -- Tanay, Amos -- Fraser, Peter -- BBS/E/B/0000M241/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/E/B/000C0404/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0800036/Medical Research Council/United Kingdom -- G117/530/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2013 Oct 3;502(7469):59-64. doi: 10.1038/nature12593. Epub 2013 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24067610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/genetics ; Chromatin/chemistry ; Chromosomes/*chemistry/genetics ; *Genetic Techniques ; Male ; Mice ; *Models, Molecular ; Molecular Conformation ; Single-Cell Analysis ; X Chromosome/chemistry/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Supergranulation is a component of solar convection that manifests itself on the photosphere as a cellular network of around 35 Mm across, with a turnover lifetime of 1 2 days. It is strongly linked to the structure of the magnetic field. The horizontal, divergent flows within supergranule cells carry local field lines to the cell boundaries, while the rotational properties of supergranule upflows may contribute to the restoration of the poloidal field as part of the dynamo mechanism, which controls the solar cycle. The solar minimum at the transition from cycle 23 to 24 was notable for its low level of activity and its extended length. It is of interest to study whether the convective phenomena that influence the solar magnetic field during this time differed in character from periods of previous minima. This study investigates three characteristics (velocity components, sizes and lifetimes) of solar supergranulation. Comparisons of these characteristics are made between the minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008, respectively. It is found that whereas the lifetimes are equal during both epochs (around 18 h), the sizes are larger in 1996 (35.9 plus or minus 0.3 Mm) than in 2008 (35.0 plus or minus 0.3 Mm), while the dominant horizontal velocity flows are weaker (139 plus or minus m per second in 1996; 141 plus or minus 1 m per second in 2008). Although numerical differences are seen, they are not conclusive proof of the most recent minimum being inherently unusual.
    Keywords: Solar Physics
    Type: Solar Physics; Volume 270; No. 1; 125-136
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The solar minimum at the transition from cycle 23 to 24 was notable for its low level of activity and its extended duration. Among the various fields of study, the evolution of the solar convection zone may provide insight into the causes and consequences of this recent minimum. This study continues previous investigations of the characteristics of solar supergranulation, a convection component strongly linked to the structure of the magnetic field, namely the time-evolution of the global mean of supergranule cell size, determined from spectral analysis of MDI Dopplergrams from the two previous solar minima. Analyses of the global mean of supergranule sizes show a quasi-oscillatory nature to the evolution of this particular supergranule characteristic. Performing similar analyses on realistic, synthetic Doppler images show similar time-dependent characteristics. We conclude that the observed fluctuations are not observational artifacts, and that an underlying trend exists within the evolution of the supergranulation network.
    Keywords: Solar Physics
    Type: GSFC.JA.01156.2012 , Journal of Physics: Conference Series; 271; 1; 012082
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 into the partly cloudy skies above Cape Canaveral, Florida. Over the next month SDO moved into a 28 degree inclined geosynchronous orbit at the longitude of the ground station in New Mexico. SDO is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand and predict those solar variations that influence life on Earth and our technological systems. The SDO science investigations will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere as the solar wind, energetic particles, and variations in the solar irradiance. The SDO mission consists of three scientific investigations (AIA, EVE, and HMI), a spacecraft bus, and a dedicated Ka-band ground station to handle the 150 Mbps data flow. SDO continues a long tradition of NASA missions providing calibrated solar spectral irradiance data, in this case using multiple measurements of the irradiance and rocket underflights of the spacecraft. The other instruments on SDO will be used to explain and develop predictive models of the solar spectral irradiance in the extreme ultraviolet. Science teams at LMSAL, LASP, and Stanford are responsible for processing, analyzing, distributing, and archiving the science data. We will talk about the launch of SDO and describe the data and science it is providing to NASA.
    Keywords: Solar Physics
    Type: Space Climate 4; Jan 16, 2011 - Jan 21, 2011; Goa; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-26
    Description: We describe how orbital tunnels could be used to transport payloads through the Earth. If you use a brachistochrone for the tunnel, the body forces in the tunnel become overwhelmingly large for small angular distances traveled. Projectiles move along an orbital tunnel faster than they would along abrachistochrone connecting the same points but the body force components cancel. We describe how parabolic Keplerian orbits outside the object merge onto quasi-Keplerian orbits inside the object. We use models of the interior of the Earth with three values of the polytropic index (n) to calculate interior or bits that travel between surface points. The n3 results are also scaled to the Sun. Numerical integrations of the equations describing polytropes were used to generate the initial models. Numerical integration of the equations of motion are then used to calculate the angular distance you can travel along the surface and the traversal time as a function of the parabolic periaps is distance for each model. Trajectories through objects of low central condensation show a focusing effect that decreases as the central condensation increases. Analytic solutions for the trajectories in a homogeneous sphere are derived and compared to the numeric results. The results can be scaled to other planets, stars, or even globular clusters.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN71116 , American Journal of Physics (ISSN 0002-9505); 87; 6; 452
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The recalibration of the International Sunspot Number brings new challenges to predictions of Solar Cycle 25. One is that the list of extrema for the original series is no longer usable because the values of all maxima and minima are different for the new version of the sunspot number. Timings of extrema are less sensitive to the recalibration but are a natural result of the calculation. Predictions of Solar Cycle 25 published before 2016 must be converted to the new version of the sunspot number. Any prediction method that looks across the entire time span will have to be reconsidered because values in the nineteenth century were corrected by a larger factor than those in the twentieth century. We report a list of solar maxima and minima values and timings based on the recalibrated sunspot number. Nave forecasts that depend only on the current values of the time series are common in economic studies. Several nave predictions of Solar Cycle 25, the climatological average (180 60), two versions of the inertial forecast, and two versions of the even-odd forecast, are derived from that table. The climatological average forecast is the baseline for more accurate predictions and the initial forecast in assimilative models of the Sun. It also provides the error estimate for Monte Carlo techniques that anticipate the long-term effects on the terrestrial environment. The other four predictions are shown to be statistically insignificant.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN66069 , Space Weather (ISSN 1539-4956) (e-ISSN 1542-7390); 16; 12; 1997-2003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A Solar Dynamo (SODA) Index prediction of the amplitude of Solar Cycle 25 is described. The SODA Index combines values of the solar polar magnetic field and the solar spectral irradiance at 10.7 cm to create a precursor of future solar activity. The result is an envelope of solar activity that minimizes the 11-year period of the sunspot cycle. We show that the variation in time of the SODA Index is similar to several wavelet transforms of the solar spectral irradiance at 10.7 cm. Polar field predictions for Solar Cycles 21 24 are used to show the success of the polar field precursor in previous sunspot cycles. Using the present value of the SODA index, we estimate that the next cycles smoothed peak activity will be about 140 30 solar flux units for the 10.7 cm radio flux and a Version 2 sunspot number of 135 25. This suggests that Solar Cycle 25 will be comparable to Solar Cycle 24. The estimated peak is expected to occur near 2025.2 1.5 year. Because the current approach uses data prior to solar minimum, these estimates may improve as the upcoming solar minimum draws closer.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN62644 , Solar Physics (ISSN 0038-0938) (e-ISSN 1573-093X); 293; 7; 112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...