ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MECHANICAL ENGINEERING  (64)
  • Chemistry  (3)
  • MACHINERY  (2)
  • Mathematical and Computer Sciences (General)  (1)
  • 11
    Publication Date: 2016-06-07
    Description: An analytical method for predicting surface fatigue life of gears was presented. General statistical methods were outlined, showing the application of the general methods to a simple gear mesh. Experimentally determined values for constants in the life equation were given. Comparison of the life theory with test results and AGMA standards was made. Gear geometry pertinent to life calculations was reviewed.
    Keywords: MECHANICAL ENGINEERING
    Type: Advanced Power Transmission Technol.; p 421-434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-06-07
    Description: The penetration depth onto the tooth flank of a jet of oil at different velocities pointed at the pitch line on the outgoing side of mesh was determined. The analysis determines the impingement depth for both the gear and the pinion. It includes the cases for speed increasers and decreasers as well as for one to one gear ratio. In some cases the jet will strike the loaded side of the teeth, and in others it will strike the unloaded side of the teeth. In nearly all cases the top land will be cooled regardless of the penetration depth, and postimpingement oil spray will usually provide adequate amounts of oil for lubrication but is marginal or inadequate for cooling.
    Keywords: MECHANICAL ENGINEERING
    Type: Advanced Power Transmission Technol.; p 461-476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: Surface fatigue tests were conducted with AISI 9310 spur gears using a formulated synthetic tetraester oil (conforming to MIL-L-23699 specifications) as the lubricant containing either sulfur or phosphorus as the EP additive. Four groups of gears were tested. One group of gears tested without an additive in the lubricant acted as the reference oil. In the other three groups either a 0.1 wt % sulfur or phosphorus additive was added to the tetraester oil to enhance gear surface fatigue life. Test conditions included a gear temperature of 334 K (160 F), a maximum Hertz stress of 1.71 GPa (248 000 psi), and a speed of 10,000 rpm. The gears tested with a 0.1 wt % phosphorus additive showed pitting fatigue life 2.6 times the life of gears tested with the reference tetraester based oil. Although fatigue lives of two groups of gears tested with the sulfur additive in the oil showed improvement over the control group gear life, the results, unlike those obtained with the phosphorus oil, were not considered to be statistically significant.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-TP-2408 , E-2042 , NAS 1.60:2408
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: Endurance tests were conducted with four groups of spur gears manufactured from three heats of consumable electrode vacuum melted (CVM) modified Vasco X-2. Endurance tests were also conducted with gears manufactured from CVM AISI 9310. Bench type rolling element fatigue tests were conducted with both materials. Hardness measurements were made to 811 K. There was no statistically significant life difference between the two materials. Life differences between the different heats of modified Vasco X-2 can be attributed to heat treat variation and resultant hardness. Carburization of gear flanks only can eliminate tooth fracture as a primary failure mode for modified Vasco X-2. However, a tooth surface fatigue spall can act as a nucleus of a tooth fracture failure for the modified Vasco X-2.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-TP-1731 , E-070
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: The design of a gear mesh is treated with the objective of minimizing the gear size for a given gear ratio, pinion torque, pressure angle, and allowable tooth lengths. Tooth strengths considered include scoring, pitting fatigue, and bending fatigue. Kinematic involute interference is avoided. The design variation on standard spur gear teeth called the long and short addendum system, is considered. In this system the mesh center distance and pressure angle are maintained as is the ability to manufacture the teeth with standard tooling. However, the pinion and gear tooth proportions are altered in order to obtain fewer teeth numbers for the same ratio as standard gears without kinematic involute interference. The effect of this nonstandard gearing geometry with on tooth strengths and gear mesh size are studied. For a 2:1 gearing ratio, the optimal nonstandard gear design is compared with the optimal standard gear design.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-TM-82866 , E-1235 , NAS 1.15:82866 , AVRADCOM-TR-82-C-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-06-28
    Description: A design procedure for sizing standard involute spur gearsets is presented. The procedure is applied to find the optimal design for two examples - an external gear mesh with a ratio of 5:1 and an internal gear mesh with a ratio of 5:1. In the procedure, the gear mesh is designed to minimize the center distance for a given gear ratio, pressure angle, pinion torque, and allowable tooth strengths. From the methodology presented, a design space may be formulated for either external gear contact or for internal contact. The design space includes kinematics considerations of involute interference, tip fouling, and contact ratio. Also included are design constraints based on bending fatigue in the pinion fillet and Hertzian contact pressure in the full load region and at the gear tip where scoring is possible. This design space is two dimensional, giving the gear mesh center distance as a function of diametral pitch and the number of pinion teeth. The constraint equations were identified for kinematic interference, fillet bending fatigue, pitting fatigue, and scoring pressure, which define the optimal design space for a given gear design. The locus of equal size optimum designs was identified as the straight line through the origin which has the least slope in the design region.
    Keywords: MECHANICAL ENGINEERING
    Type: Advanced Power Transmission Technol.; p 435-460
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-28
    Description: Surface fatigue tests were conducted on two groups of AISI 9310 spur gears. Both groups were manufactured with standard ground tooth surfaces, with the second group subjected to an additional shot peening process on the gear tooth flanks. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a gear temperature of 350 K (170 F), a maximum Hertz stress of 1.71 billion N/sq m (248,000 psi), and a speed of 10,000 rpm. The shot peened gears exhibited pitting fatigue lives 1.6 times the life of standard gears without shot peening. Residual stress measurements and analysis indicate that the longer fatigue life is the result of the higher compressive stress produced by the shot peening. The life for the shot peened gear was calculated to be 1.5 times that for the plain gear by using the measured residual stress difference for the standard and shot peened gears. The measured residual stress for the shot peened gears was much higher than that for the standard gears.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-TP-2047 , E-936 , NAS 1.60:2047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-06-28
    Description: Out-of-mesh jet lubrication of gears was examined. The pinion impingement cycle was described briefly. An analysis was developed for the lubricant jet flow in the out-of-mesh condition. The analysis provides for the inclusion of modified center distances and modified addendum. Equations were generated for the limit values of variables necessary to remove the severe limitations to facilitate computer analysis. A computer program was designed using these limit formulas to prevent negative impingement (missing) on the pinion.
    Keywords: MECHANICAL ENGINEERING
    Type: ASME PAPER 84-DET-96 , ASME; 24-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-TM-87096 , E-2660 , NAS 1.15:87096
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-06-28
    Description: Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-TP-2513 , E-2578 , NAS 1.60:2513
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...