ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0749-1581
    Keywords: (20R)-5α-Dinosterane ; Two-dimensional 1H—1H and 1H—13C correlation ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Detailed analysis of the 1H and 13C NMR spectra of four diastereomers of the important geochemical biomarker (20R)-5α-dinosterane was completed using various two-dimensional 1H—1H and 1H—13C correlation techniques.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Multi-spectral imagery of Jupiter's Great Red Spot (GRS) and two White ovals acquired by the Galileo/NIMS are used to constrain the spatial variability of the vertical aerosol structure and the distribution of ammonia in and around these most-prominent anti-cyclonic features. All three features exhibit a high-altitude core spanning about 3/4 of their visual size when viewed with moderate absorption wavelengths, indicating a bulk elliptical, "wedding cake" shape in their overall three-dimensional cloud structure. A distinctive spiral pattern within the GRS core is seen in moderate methane and hydrogen absorption bandpasses. This pattern - which has been modelled to show a 2 km variation in cloudtop pressure within the GRS - is inconsistent with a different spiral-shaped pattern observed in ammonia-sensitive wavelengths, thus indicating spatial variability not only in the column abundance of ammonia within the GRS, but in its mixing ratio as well. White Ovals BC and DE were observed in February 1997, just a year before their unusual merger into a single feature. At the time of these observations, the centers of the two anti-cyclones were about 16 degrees apart, separated by a complex cyclonic feature which exhibited unusual spatial variability in its appearance in images acquired at ammonia-sensitive wavelengths. In particular, the northern half of this feature has the largest ammonia column abundance seen within the environs around the white ovals, indicating unusual variability in either cloud structure/altitude and/or ammonia humidity within the cyclone.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features. Since the advent of modern telescopes, keen observers have noted its appearance and documented a change in shape from very oblong to oval, confirmed in measurements from spacecraft data. It currently spans the smallest latitude and longitude size ever recorded. Here we show that this change has been accompanied by an increase in cloud/haze reflectance as sensed in methane gas absorption bands, increased absorption at wavelengths shorter than 500 nanometers, and increased spectral slope between 500 and 630 nanometers. These changes occurred between 2012 and 2014, without a significant change in internal tangential wind speeds; the decreased size results in a 3.2 day horizontal cloud circulation period, shorter than previously observed. As the GRS has narrowed in latitude, it interacts less with the jets flanking its north and south edges, perhaps allowing for less cloud mixing and longer UV irradiation of cloud and aerosol particles. Given its long life and observational record, we expect that future modeling of the GRS's changes, in concert with laboratory flow experiments, will drive our understanding of vortex evolution and stability in a confined flow field crucial for comparison with other planetary atmospheres.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19804
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Progress was made on this project at the University of Colorado, particularly concerning analysis of data of the galilean moons Io and Europa. The goal of the Io portion of this study is to incorporate Near Infrared Mapping Spectrometer (NIMS) measured sulfur dioxide (SO2) frost amounts into models used with Ultraviolet spectrometer (UVS) spectra, in order to better constrain SO2 gas amounts determined by the UVS. The overall goal of this portion of the study is to better understand the thickness and distribution of Io's SO2 atmosphere. The goal of the analysis of the Europa data is to better understand the source of the UV absorption feature centered near 280 rim which has been noted in disk-integrated spectra primarily on the trailing hemisphere. The NIMS data indicate asymmetric water ice bands on Europa, particularly over the trailing hemisphere, and especially concentrated in the visibly dark regions associated with chaotic terrain and lines. The UPS data, the first-ever disk-resolved UV spectra of Europa, shown that the UV absorber is likely concentrated in regions where the NIMS data show asymmetric water ice bands. The material that produces both spectral features is likely the same, and we use data from both wavelength regions to better understand this material, and whether it is endogenically or exogenically produced. This work is still in progress at JPL.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Drifting in the strong winds of Venus under benign Earth-like temperature and pressure conditions, an instrumented balloon-borne science station presents a viable means to explore, in-situ, the Venusian atmosphere on a global scale. Flying over the ground at speeds exceeding 240 km/hour while floating in the Venusian skies near 55 km altitude for several weeks, such an aerostat can conduct a 'world tour' of our neighboring planet, as it circumnavigates the globe multiple times during its flight from equatorial to polar latitudes. Onboard science sensors can repeatedly and directly sample gas compositions, atmospheric pressures and temperatures and cloud particle properties, giving unprecedented insight into the chemical processes occurring within the sulfuric clouds. Additionally, interferometric tracking via Earth-based radio observatories can yield positions and windspeeds to better than 10 cm/sec over one-hour periods, providing important information for understanding the planet's meridional circulation and enigmatic zonal super-rotation, as well as local dynamics associated with meteorological processes. As well, hundreds of GCMS spectra collected during the flight can provide measurements of noble gas compositions and their isotopes with unprecedented accuracy, thereby enabling fundamental new insights into Venus's origin and evolution.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary Probe Conference; Jul 01, 2005; Athens; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: The Science Definition Team (SDT) for NASA's Jupiter Icy Moons Orbiter (JIMO) Mission recommends including a lander as an integral part of the science payload of the JIMO Mission. The Europa Surface Science Package (ESSP) could comprise up to 25% of science payload resources. We have identified several key scientific and technical issues for such a lander, including 1) the potential effects of propellant contamination of the landng site, 2) the likely macroscopic surface roughness of potential landing sites, and 3) the desire to sample materials from depths of approximately 1 m beneath the surface. Discussion and consensus building on these issues within the science community is a prerequisite for establishing design requirements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 18; LPI-Contrib-1234-Pt-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...