ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 41 (1998), S. 461-467 
    ISSN: 0021-9304
    Keywords: microencapsulation ; diabetes ; atomic force microscopy ; surface characterization ; immunoisolation device ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The surface morphology of the microcapsule used as a bioartificial pancreas was examined by atomic force microscopy (AFM) under ambient conditions in a liquid environment. The standard contact mode was used for imaging. The capsules exhibited different morphologies and surface roughness depending on the composition of the cation solution: namely, the mole ratio of antigelling and gelling cations [Na+]/[Ca2+]. Surface roughness parameters obtained by AFM measurements provide quantitative information on the surface properties of the capsular membrane. In this respect, AFM can be considered a valuable technique complementary to optical microscopy in providing feedback for capsule optimization. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 41, 461-467, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The present invention is drawn to a composition of matter comprising high viscosity sodium alginate, cellulose sulfate and a multi-component polycation. Additionally, the present invention provides methods for making capsules, measuring capsule permeability to immunologically-relevant proteins and treating disease in an animal using encapsulated cells. Over one thousand combinations of polyanions and polycations were examined as polymer candidates suitable for encapsulation of living cells and thirty-three pairs were effective. The combination of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine) hydrochloride, calcium chloride, and sodium chloride produced the most desirable results. Pancreatic islets encapsulated in this multicomponent capsule demonstrated glucose-stimulated insulin secretion in vitro and reversed diabetes without stimulating immune reaction in mice. The capsule formulation and system of the present invention allows independent adjustments of capsule size, wall thickness, mechanical strength and permeability, and offers distinct advantages for immunoisolating cells.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...