ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-20
    Description: Established research has illustrated that moderate exposure to stress in the womb influences both adult phonotype and genotype for several physiological pathways, especially in males. Proposed explanations include adaptions made by the fetus resulting from a limited supply of nutrients, referred to as the thrifty phenotype. In this study, we examine this fetal programming effect on the appetite control and energy expenditure pathways in prenatally stressed adult male offspring. Subjects were male rats born from time-mated female rats exposed to unpredictable, variable prenatal stress (UVPS) throughout gestation. An analysis of the adult male rat offspring genetic expression of epididymal fat pads and the plasma concentrations of hormones involved in appetite control and energy expenditure pathways showed a significantly diminished expression of leptin and adiponectin compared to unstressed controls. Leptin and adiponectin are both major hormones involved in the appetite control and energy expenditure pathways, with leptin regulating energy balance due to its function as an inhibitor of hunger, and adiponectin modulating glucose levels and fatty acid breakdown. We observed higher leptin concentrations within the prenatally stressed male plasma, and lower expression of leptin (OB) and adiponectin (ADIPOQ) genes from the epididymal fat pads. We suggest that elevated leptin in the plasma elicited a negative feedback effect on OB expression levels, decreasing their quantification compared to control animals. Further analysis will include plasma quantification of insulin and glucose, as well as expression of ghrelin, a peptide which acts on the central nervous system and the bodys perception of hunger.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33060 , International Society for Development Psychobiology (ISDP) Annual Meeting; Nov 09, 2016 - Nov 11, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hypergravity demonstrated significantly increased (8-15) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported the same outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes using our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats. Time-mated female rats were exposed throughout their 22-day pregnancy to UVPS consisting of white noise, strobe light, and tube restraint individually once per day on an unpredictable schedule for 15, 30 or 60 min. To control for potential changes in postnatal maternal care, newborn pups were fostered to non-manipulated, newly parturient dams. At 90-days of age, we analyzed plasma concentrations of hormones involved in appetite control and energy expenditure (leptin and adiponectin), and quantified expression of key genes in epididymal fat pads harvested from adult male offspring and controls. Leptin regulates energy balance by inhibiting hunger, and adiponectin modulates glucose levels and fatty acid breakdown. Our findings indicate significantly elevated plasma leptin concentrations and reduced expression of epididymal fat leptin (OB) and adiponectin (ADIPOQ) genes compared to controls. Analyses presently underway include quantification of plasma insulin and glucose, and the expression of ghrelin, a peptide that acts on the central nervous system and the body's perception of hunger. Collectively, these findings will further understanding of the consequences of UVPS on body weight regulation and metabolism, and provide further insight into the effect of gravity modulation on mammalian fetal development.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33631 , Annual Meeting American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36744 , Annual Meeting of the American Society of Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36746 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group phenotype. This analysis contributes to the first NASA long-duration study of rodent behavior, providing evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36632 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-term effects of UVPS. Here, we measured methylation of brain-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-relevant brain regions, which may have linkages to the phenotypic outcomes.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN22394 , International Society for Developmental Psychobiology (ISDP); Jul 20, 2015 - Jul 23, 2015; San Sebastian; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The NASA Decadal Survey (2011), Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, emphasized the importance of expanding NASA life sciences research to long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities supporting mouse studies in space were developed at NASA Ames Research Center. The first flight experiment carrying mice, Rodent Research Hardware and Operations Validation (Rodent Research-1), was launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4, exposing the mice to a total of 37 days in space. Ground control groups were maintained in environmental chambers at Kennedy Space Center. Mouse health and behavior were monitored for the duration of the experiment via video streaming. Here we present behavioral analysis of two groups of five C57BL/6 female adult mice viewed via fixed camera views compared with identically housed Ground Controls. Flight (Flt) and Ground Control (GC) mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another, and they quickly learned to anchor themselves using tails and/or paws. Overall activity was greater in Flt as compared to GC mice, with spontaneous ambulatory behavior including the development of organized circling or race-tracking behavior that emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. We quantified the bout frequency, duration and rate of circling with respect to characteristic behaviors observed in the varying stages of the progressive development of circling: flipping utilizing two sides of the habitat, circling, multi-lap circling and group-circling. Once begun, mice did not regress to flipping behavior or other previous behavioral milestones for the remainder of flight. An overall upward trend in circling frequency, rate, duration, participation, and organization was observed over the course of the 37-day spaceflight experiment. In this presentation, we will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral analyses provide important insights into the overall health and adaptation of mice to the space environment, and identify unique behaviors and social interactions to guide future habitat development and research on rodents in space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28255 , 2016 Human Research Program Investigators Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48058 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Social interactions are adaptive responses to environmental pressures that have evolved to facilitate the success of individual animals and their progeny. Quantifying social behavior in social animals is therefore one method of evaluating an animal's health, wellbeing and their adjustment to changes in their environment. The interaction between environment and animal can influence numerous other physiological and psychological responses that may enhance, deter or shift an animals social paradigm. For this study, we utilized flight video from the Rodent Research Hardware and Operations Validation mission (Rodent Research-1; RR1) on the International Space Station (ISS). Female mice spent 37 days in microgravity on the ISS and video was captured during the final 33 days. In a previous analysis of individual behavior, we also reported an observed spontaneous ambulatory behavior which we termed circling or 'race tracking,' and we anecdotally observed an increase in group organization around this behavior. In this analysis we further examined this behavior, and other social interactions, to determine if (1) animals joining in on this behavior were induced by other cohort members already participating in this circling behavior, (2) rates of joining varied by number already participating.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48034 , American Society for Gravitational and Space Research Meeting (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Hindlimb unloading (HU) is a rodent model system used to simulate weightlessness experienced in space. However, some effects of this approach on rodent physiology are under-studied, specifically the effects on ovarian estrogen production which drives the estrous cycle. To resolve this deficiency, we conducted a ground-based validation study using the HU model, while monitoring estrous cycles in 16-weeks-old female C57BL6 mice. Animals were exposed to HU for 12 days following a 3 day HU cage acclimation period, and estrous cycling was analyzed in HU animals (n=22), normally loaded HU Cage Pair-Fed controls (CPF; n=22), and Vivarium controls fed ad libitum (VIV; n=10). Pair feeding was used to control for potential nutritional deficits on ovarian function. Vaginal cells were sampled daily in all mice via saline lavage. Cells were dried and stained with crystal violet, and the smears evaluated using established vaginal cytology techniques by two individuals blinded to the animal treatment group. Estrous cyclicity was disrupted in nearly all HU and CPF mice, while those maintained in VIV had an average normal cycle length of 4.8+/- 0.5 days, with all stages in the cycle visibly observed. CPF and HU animals arrested in the diestrous phase, which precedes the pre-ovulatory estrogen surge. Additionally, infection-like symptoms characterized by vaginal discharge and swelling arose in several HU animals, which we suspect was due to an inability of these mice to properly groom themselves, and/or due to the change in the gravity vector relative to the vaginal opening, which prevented drainage of the lavage solution. Pair-feeding resulted in similar weight gains of HU and CPF (1.5% vs 3.0%, respectively). The current results indicate that pair-feeding controlled weight gain and that the HU cage alone influenced estrous cyclicity. Thus, longer acclimation needs to be tested to determine if and when normal estrous cycling resumes in non-loaded mice in HU cages prior to HU testing. Future studies might also examine whether modifications to the vaginal lavage procedure might prevent the onset of the infection-like symptoms, and allow estrous cyclicity to be measured in this model system. Research supported by NNX15AB48G to JST.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN44644 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...