ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical Engineering  (8)
Collection
Keywords
Publisher
  • 1
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Uniform submicron crystals of B4C, boron-enriched boron carbide, and B4C/TiB2 composite powders have been synthesized continuously by rapid carbothermal reduction at approximately 2,200 K in a 0.14 m ID × 1.68 m long pilot-scale graphite transport reactor. A unique reactor design allowed for continuous feeding of a meltable boron oxide containing precursor, rapid heating rates that completed the carbothermal reduction reaction in seconds, and an expanded cooling that allowed for the precipitation in space of volatile excess boron oxides. Powder morphology resembled that of powder synthesized by laser pyrolysis of gaseous reactants. Rapid heating rates and minimized reaction times at high temperatures promoted nucleation with limited crystal growth. Dense parts fabricated from these powders had fine grains and extreme hardness.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Nanophase SiC/Si3N4 composite powders were synthesized by the carbothermal nitridation of SiO2. These powders have desirable characteristics of high quality with oxygen contents on the order of 1.5 to 2 wt. %, surface area of ∼ 10 m2/g, submicron α-Si3N4, low metallic impurity levels, and a homogeneous distribution of the nanophase SiC phase. High-resolution TEM analysis has shown that the content and size of the nanophase SiC can be varied from 0.5 to 50 wt. % and 25 to 500 nm, respectively, through proper control of raw materials and reactor conditions. To determine how the nanophase SiC reinforcement affects the mechanical properties of Si3N4, densified components were fabricated using both pressureless and pressure-assisted densification methods. TEM analysis revealed that the nanophase SiC particles are distributed both intergranularly and intragranularly throughout the Si3N4, matrix. By controlling the sintering additive package and the sintering conditions, the ratio of inter- to intragranular SiC can be adjusted. Mechanical property measurements at elevated temperatures showed a dramatic improvement in high-temperature strength and creep resistance over components made with commercially available powders.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 2609-2609 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 1685-1692 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The formation of submicron crystals of boron carbide (B4C) by coagulation and sintering by the rapid carbothermal reduction of intimately mixed carbon-boron oxide powders in an aerosol flow reactor at temperatures above the boiling point of boron oxide is investigated. High heating rates (105K/s) force rapid evaporation of boron oxide and suboxides from the precursor powder, resulting in its rupture and formation of boron carbide molecular clusters that grow to macroscopic particles by coagulation. Consequently, the formation and growth of B4C particles are described by simultaneous interparticle collision and coalescence using a two-dimensional particle-size distribution model that traces the evolution of both size and shape characteristics of the particles through their volume and surface area. In addition to the coagulation term, the governing population balance equation includes a coalescence contribution based on B4C sintering law. The predicted evolution of the two-dimensional particle-size distribution leads to a direct characterization of morphology as well as the average size and polydispersity of the powders. Furthermore, model predictions of the volume and surface area of boron carbide particles can be directly compared with experimental data of B4C specific surface area and an effective sintering rate of B4C is deduced.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 493-503 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Carbothermal reduction kinetics to synthesize SiC is studied under conditions of high carbon/silica precursor heating rates (105 K/s) and minimized reaction times (s) over a wide temperature range (1,848≤T≤2,273 K). The reaction mechanism includes rapid formation of a gaseous SiO intermediate. Further carbon reduction of the SiO to SiC is reaction-rate-controlling. Carbon crystallite diameter, d, has a substantial influence on the rate of reaction and the size of synthesized SiC. Fractional oxide conversion, X, can be described by a contracting volume shrinking core model: \documentclass{article}\pagestyle{empty}\begin{document}$$ k = \frac{{1 - (1 - X)^{1/3} }}{t} = \frac{{k_o }}{d}\,\exp \,(- E/RT) $$\end{document} where k0 = 27.4 m/s and E = 382±34 kJ/mol.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 1395-1397 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 32 (1986), S. 877-878 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 25 (1979), S. 730-732 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...