ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Temperature sweeps of dynamic viscoelastic properties have shown that phydroxybenzoic acid (PHB)-based liquid crystalline polyesters, specifically in this case those copolymerized with poly(ethylene terephthalate) (PET), can be subjected to considerable supercooling if initial heating curves are compared to subsequent cooling curves, indicating that this type of material can be in quite different states even at the same temperature, depending on thermal history. Utilizing this supercooling behavior, viscoelastic properties of a 60 mol% PHB/40 mol% PET material produced by Unitika were monitored before and, particularly, after large-scale shear deformation to determine how potential structure changes induced by the shear are reflected in viscoelastic properties immediately, and with time. According to dynamic viscoelastic temperature sweep data four quite different initial states were employed including conditions with, as well as largely free of, crystallites. However, in all cases, post-shear monitoring showed decreased G′ and G″ values with almost no evidence of return towards initial values within approximately 25 min. These results, in addition to furthering somewhat the fundamental understanding of the flow and relaxation properties of liquid crystalline polymers, may be useful in polymer processing, where large-scale shear deformations employed in forming processes appear to be capable of changing considerably the subsequent behavior of such materials.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In this paper, the rheology of a 60 mol% para-hydroxybenzoic acid (PHB)/40 mol% poly(ethylene terephthalate) (PET) copolyester (herein referred to as PHB60/PET40) produced by Unitika Co., Japan, was investigated using viscoelastic property temperature sweeps. In addition to the large-scale hysteresis (super-cooling) of viscoelastic properties that has also been seen with other PHB-based materials, in which it is possible for several PHB linkages to occur side by side along the polymer backbone (most notably the PHB60/PET40 polymer produced by Tennessee Eastman), smaller-scale viscoelastic transitions, one present in heating, and believed to be associated with the partial isotropization of liquid crystalline material, and the other apparent on cooling, occurring at a lower temperature than the first and thought to be associated with the opposite process, were observed. When overall mol% PHB composition along individual chains is considered, the well-defined appearance of the additional smaller-scale rheological transitions seen here is believed to be due to a unimodal composition distribution, rather than a bimodal distribution of which there is increasing evidence in the Tennessee Eastman materials. This difference is believed to be caused by differences in the preparation technique used for the Unitika version of the polymer.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...