ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 840-848 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The continuous stirred tank emulsion polymerization of vinyl acetate has shown oscillatory behavior in conversion, particle size, molecular weight, and polydispersity during polymerization. The kinetics in vinyl acetate emulsion polymerization are especially complex because of chain transfer to polymer and monomer and the terminal double bond reaction. A nonsteady-state model to predict the average molecular weights is developed for this polymerization system. Improved results are achieved by inclusion of the effects of polymer chain initiation and termination by absorbed radicals. It is found that the observed oscillations are closely related to the radical diffusion and desorption rates that are involved in a heterogeneous initiation mechanism. The molecular weights and polydispersities are successfully predicted by the model. The nature of the oscillations in these properties is examined.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 1814-1823 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The major morphological changes during polymer blending occur during the initial softening stage. This work explains the evolution of phase morphology of polymer blends from pellets to submicron particles in a co-rotating twin-screw extruder. The extruder was opened and blend samples were taken along its length. The major phase component was extracted by means of a selective solvent so that the dispersed phase morphology could be viewed directly by using scanning electron microscopy. The two systems studied were 80:20 polystyrene/amorphous polyamide and 80:20 polystyrene/polypropylene. In both systems, the initial morphology consisted of sheets of dispersed phase. Holes form in the sheets, and these holes grow as a result of interfacial tension forces until they coalesce with each other, forming thin ligaments. These fluid ligaments are unstable and break up via mixer shear forces. Very large changes in dispersed phase size are observed during the softening stage. The particle size changes less after the polymers are completely melted. The extruder results are compared to results from a batch mixer. The same dispersed phase sheeting mechanism is seen in the initial morphology in the batch mixer and the breakup of the dispersed phase domains parallels the breakup seen in the extruder.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...