ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical Engineering  (2)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 23 (1983), S. 191-196 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Our laboratory recently published several analytical equations that can be used to predict the melting rate of fully compacted solid polymers sliding on a heated metal surface, modeling the melting mechanism inside an extruder. These equations were obtained by seeking asymptotic solutions to the differential equations describing the melting mechanism, temperature, and shear-dependent viscosity of polymer melts. Following the same asymptotic approach, we successfully developed accompanying analytical equations for predicting the stress required to slide fully compacted solid polymers on a heated metal surface. The accuracy of these analytical stress equations was found to be reasonable, although not fully satisfactory, by comparing their predictions to the experimentally measured values. The accuracy of the stress calculation is directly related to the accuracy of the viscosity values at high shear rates. The consideration of the temperature and shear dependencies of melt viscosity is most important for accurate prediction of the stress, just as it is for the melting rate. The stress not only depends on the melt rheological properties of the polymer but also on the thermodynamic properties.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Journal of Vinyl and Additive Technology 3 (1981), S. 208-214 
    ISSN: 0193-7197
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: PVC/EVA blends were studied with an extrusion plastometer in order to examine the effect of EVA on the processability of PVC. The melt flow of PVC/EVA blends containing from 4 to 30 weight percent EVA follows a simple power law between 160 and 180°C. EVA reduced the melt viscosity and enhanced processability. Blends of PVC and EVA were morphologically incompatible. The molecular weight of extruded PVC in the blends was unchanged.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...