ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 29 (2000), S. 1089-1099 
    ISSN: 1572-8927
    Keywords: Rare earth elements ; fluoride complexation ; stability constants ; sodium perchlorate ; ionic strength ; lanthanide ; yttrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Formation constants for the complexation of yttrium and rare earth elements(YREE) by fluoride ions have been measured at 25°C. The ionic strength (μ)dependence of YREE formation constants in perchlorate solution for ionicstrengths between 0 and 6 molar can be expressed aslogFβ1 (M, μ) =logFβ1 o (M) −3.066 μ0.5/(1 + 1.769 μ0.5)+ 0.1645 μwhere logFβ1 o(M) represents MF2+formation constants at zero ionic strength.The logFβ1 o(M) results obtained inthis work are: Y(4.46), La(3.62), Ce(3.86),Pr(3.84), Nd(3.82), Sm(4.15), Eu(4.27), Gd(4.24), Tb(4.37), Dy(4.39), Ho(4.28),Er(4.27), Tm(4.29), Yb(4.39), and Lu(4.25). The relative magnitudes of YREEformation constants are independent of ionic strength. The pattern oflogFβ1(M,μ),formation constants obtained in this work [relative magnitudes oflogFβ1 o (M)],exhibits a shallow minimum between Dy and Yb. In contrast to the smoothpattern of stability constants expected if fluoride were to interact with bare ions(with monotonically decreasing crystal radii between La and Lu), theinteractionof F− with YREEs, which have extensive hydration spheres[M(H2O)8–9 3+] resultsin a relatively complex pattern of lanthanide stability constants. The fluoridecomplexation behavior of yttrium differs distinctly from the behavior of any rareearth. Although the crystal radius of Y3;pl is approximately equalto that of Ho3+,differences in the covalence/ionicity of Y3+ relative to therare earths leads to aYF2+ stability constant that exceeds that of any rare earthelement (REE).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8927
    Keywords: Coprecipitation ; rare earths ; lanthanides ; yttrium ; phosphate ; arsenate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Coprecipitation of yttrium (Y) and rare earth elements (REEs) with phosphate and arsenate removes these elements from solution in variable proportions. During both phosphate and arsenate Coprecipitation, middle REEs (Sm and Eu) are progressively depleted in solution relative to heavier and lighter elements. Solution complexation by oxalate (Ox 2-) influences Y and REE removal patterns by strongly enhancing the retention of Y and the heaviest REEs in solution. The extent of this enhancement is well described by a quantitative account of the comparative solution complexation of Y and REEs as M(Ox)+ and M(Ox) $$_{\text{2}}^ - $$ . The comparative behavior of phosphate and arsenate coprecipitation exhibits both similarities and differences. During arsenate coprecipitation the light REEs are retained in solution, relative to the heavy REEs, to a greater extent than is the case for phosphate coprecipitation. Notable irregularities are observed in the comparative coprecipitation behavior of nearest-neighbor elements (e.g., Eu–Gd–Tb and Tm–Yb–Lu). Such irregularities are very similar for phosphate and arsenate coprecipitation in the absence and in the presence of solution complexation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic geochemistry 3 (1997), S. 99-115 
    ISSN: 1573-1421
    Keywords: rare earth elements ; copper ; complexation ; ionic strength effects ; nitrilotriacetic acid ; lanthanide ; yttrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Observations of competitive complexation of NTA by Cu2+ and rare earth element (REE) ions are used to determine REE-NTA stability constants at ionic strengths between 0.1 and 5.0 molar. Although REE stability constants change markedly with ionic strength, differences in the ionic strength dependence of REE-NTA stability constants across the rare earth element series are small. The ionic strength dependence of logβ1 for Y and REEs with NTA at 25 °C can be described as: logβ1(M) = logβ1(M)0 - 9.198 I1/2/(1+B I1/2)+C I + D I3/2, where β1(M) = [MNTA°][M3+]-1[NTA3-]-1, I is ionic strength, B = 1.732, C = 0.1596, D = 0.0816, and logβ1(M)° is the metal-NTA stability constant at zero ionic strength.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 5 (1959), S. 551-555 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The enthalpy of water in the liquid state has been calculated from 32°F. to temperatures approaching the critical and pressures ranging from saturated conditions to 160,000 lb./sq. in. abs. (approximately 11,000 atm). The results of this study are presented graphically and show that the influence of pressure on enthalpy is significant, particularly in the lower temperature region. At these conditions pressure is found to increase the enthalpy of liquid water by as much as 360 B.t.u./lb. above the corresponding enthalpy of the saturated liquid state.A comprehensive literature search disclosed PVT data for water that permitted the construction of a density correlation. This correlation expressed in reduced coordinates extends from the normal freezing point of water to temperatures of 1,870°F. (TR = 2.0) and pressures ranging up to 10,915 atm. (PR = 50). The recent extensive PVT data of Kennedy reported in 1950 supplemented with the earlier data of Amagat and Bridgman allowed the calculation of enthalpies at these elevated temperatures and pressures. For these calculations basic thermodynamic relationships were adapted which utilized this reduced density correlation. This approach has made possible the extension of the thermodynamic properties of liquid water above the highest pressure reported by Keenan and Keys. Below this pressure of 6,000 lb./sq. in abs. good agreement was found to exist between the enthalpy values presented by Keenan and Keyes and those reported in this investigation.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 7 (1961), S. 185-189 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The critical compressibility factor has been used as a criterion for the correlation of the P.V.T.-behavior in the gaseous and liquid states for the diatomic gases, nitrogen, oxygen, carbon monoxide, nitric oxide, chlorine, and hydrogen chloride. Reduced densities for these substances have been calculated from available literature data. These are presented as functions of reduced temperature and reduced pressure to produce extensive density correlations for nitrogen, oxygen, and carbon monoxide. These correlations exhibit similar behavior as expected from their similar critical compressibility factors.The validity of the critical compressibility factor as a correlating parameter has been verified by the favorable comparison of the P.V.T.-behavior of substances other than diatomic gases including argon, krypton, xenon, and methane. These results indicate that the P.V.T.-behavior of substances having critical compressibility factors of approximately 0.291 can be predicted from the reduced state correlation developed in this study as long as polarity effects are absent.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...