ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 22 (1976), S. 921-923 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 524-528 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Recent work has shown that moisture diffusion coefficients can be measured in thin polymer films through monitoring changes in permittivity with microdielectric sensors. The sensor is constructed in silicon and consists of an interdigitated electrode and two depletion mode field effect transistors. When operated in conjunction with appropriate external circuitry, the sensor measures dielectric constant and loss factor of any material placed on the SiO2 insulator and aluminum electrodes. The dielectric properties are measured locally within the first 10 microns of the film in contact with the sensor. As a thin polymer film on the sensor is exposed to a high relative humidity, the dynamically measured dielectric constant can be used to determine exactly when the moisture arrives at the polymer-SiO2 interface and the rate at which the concentration increases. The magnitude of the change in permittivity after equilibration has also been related to total amount of moisture uptake. In this investigation, several epoxy/amine films of varying mix ratios and cure state are cured on microdielectric sensors. The films, approximately 100 microns thick, are alternately exposed to wet and dry environments. Diffusion coefficients for both absorption and desorption are determined from the dielectric data as a function of cure state and epoxy/amine mix ratio. In addition, relative changes in amount of moisture uptake after equilibration is monitored.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 12 (1991), S. 87-90 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: With the relatively recent trend toward adaptive process control during processing of structural composites, there is need for an understanding of the nature of variations during cure that are encountered. Part-to-part variations can arise because of differences in thermal exposure arising from part placement or part thickness, or from chemical differences due to formulation or advancement. Microdielectric sensors are particularly well suited for monitoring thermoset cures from initial point of flow, through the liquid region, and on into the solid state. In this study, microdielectric sensors are used to systematically study the influence of resin advancement on cure behavior. Relationships between advancement and critical cure phenomena such as flow temperature, point of viscosity minimum, and reaction end point are discussed.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Photovoltaic (PV) systems (cells and arrays) for spacecraft power have become an international market. This market demands accurate prediction of the solar array power output in space throughout the mission life of the spacecraft. Since the beginning of space flight, space-faring nations have independently developed methods to calibrate solar cells for power output in low Earth orbit (LEO). These methods rely on terrestrial, laboratory, or extraterrestrial light sources to simulate or approximate the air mass zero (AM0) solar intensity and spectrum.
    Keywords: Spacecraft Propulsion and Power
    Type: 17th Space Photovoltaic Research and Technology Conference; 101-104; NASA/CP-2002-211831
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The successful performance of the five individual demonstrations of MARS IN-SITU-PROPELLANT-PRODUCTION PRECURSOR (MIP) will provide both knowledge of and confidence in the reliability of this technology. At the completion of this flight demonstration, the MIP Team will be able to: a) recommend preferred hardware configurations for the intake and adsorption of carbon dioxide from the Martian atmosphere; b) understand the performance characteristics of zirconia cells to generate propellant-grade oxygen; c) understand long-term performance characteristics of advanced solar cells/arrays operated in the actual Mars environment; d) evaluate the functionality of methods to mitigate the deposition of airborne dust onto solar arrays; and e) recommend preferred hardware designs for innovative thermal management including the radiation of heat to the outside environment.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-6027 , Human Space Transportation and Exploration Workshop; Feb 28, 2000 - Mar 01, 2000; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.
    Keywords: Spacecraft Propulsion and Power
    Type: 17th Space Photovoltaic Research and Technology Conference; 49-54; NASA/CP-2002-211831
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-12
    Description: Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this propulsion method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the irradiation of candidate solar sail materials to energetic electrons, in vacuum, to determine the hardness of several candidate sail materials.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-TM-107197 , E-10177 , NAS 1.15:107197
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-27
    Description: Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2011-217103 , AIAA Paper 2010-6692 , E-17727-1 , 8th International Energy Conversion Engineering Conference (IECEC); 28-5-28 Jul. 2010; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...