ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellulose 3 (1996), S. 63-75 
    ISSN: 1572-882X
    Keywords: antibodies ; cellulose synthase ; Acetobacter xylinum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract An immunochemical method was used to analyse the 83 and 93 Kd polypeptides of cellulose synthase from Acetobacter xylinum.Polyclonal antibodies were raised against the LDS-PAGE-fractionated 83 and 93 Kd polypeptides isolated from A. xylinum.Using these antibodies, the 83 and 93 Kd polypeptides were localized in the different fractions during purification of cellulose synthase, and the ratio of these two polypeptides was determined to be 1∶1. A differential solubilization of the 83 and 93 Kd polypeptides from the cell strongly suggested that the mechanism by which these two polypeptides originate from a single acsAB gene product (Saxena et al.,1994) must be via a post-translational cleavage. The results of trypsin treatment of the membrane fraction used in the purification of cellulose synthase were analysed to determine the fate of these two polypeptides and their relationship to the enzyme activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 12 (1999), S. 32-42 
    ISSN: 1432-2145
    Keywords: Key words Arabidopsis thaliana ; Alveoli ; Development ; Endosperm ; Microtubules ; Seeds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The process of endosperm development in Arabidopsis was studied using immunohistochemistry of tubulin/microtubules coupled with light and confocal laser scanning microscopy. Arabidopsis undergoes the nuclear type of development in which the primary endosperm nucleus resulting from double fertilization divides repeatedly without cytokinesis resulting in a syncytium lining the central cell. Development occurs as waves originating in the micropylar chamber and moving through the central chamber toward the chalazal tip. Prior to cellularization, the syncytium is organized into nuclear cytoplasmic domains (NCDs) defined by nuclear-based radial systems of microtubules. The NCDs become polarized in axes perpendicular to the central cell wall, and anticlinal walls deposited among adjacent NCDs compartmentalize the syncytium into open-ended alveoli overtopped by a crown of syncytial cytoplasm. Continued centripetal growth of the anticlinal walls is guided by adventitious phragmoplasts that form at interfaces of microtubules emanating from adjacent interphase nuclei. Polarity of the elongating alveoli is reflected in a subsequent wave of periclinal divisions that cuts off a peripheral layer of cells and displaces the alveoli centripetally into the central vacuole. This pattern of development via alveolation appears to be highly conserved; it is characteristic of nuclear endosperm development in angiosperms and is similar to ancient patterns of gametophyte development in gymnosperms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2145
    Keywords: Cytokinesis ; Microtubules ; Microsporogenesis ; Orchids ; Phragmoplast ; Pollen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Microsporocytes of the slipper orchidCypripedium californicum A. Gray divide simultaneously after second meiosis. The organization and apportionment of the cytoplasm throughout meiosis are functions of nuclear-based radial microtubule systems (RMSs) that define domains of cytoplasm - a single sporocyte domain before meiosis, dyad domains within the undivided cytoplasm after first meiosis, and four spore domains after second meiosis. Organelles migrate to the interface of dyad domains in the undivided cytoplasm after first meiotic division, and second meiotic division takes place simultaneously on both sides of the equatorial organelle band. Microtubules emanating from the telophase II nuclei interact to form columnar arrrays that interconnect all four nuclei, non-sister as well as sister. Cell plates are initiated in these columns of microtubules and expand centrifugally along the interface of opposing RMSs, coalescing in the center of the sporocyte and joining with the original sporocyte wall at the periphery to form the tetrad of microspores. Organelles are distributed into the spore domains in conjunction with RMSs. These data, demonstrating that cytokinesis in microsporogenesis can occur in the absence of both components of the typical cytokinetic apparatus (the preprophase band of microtubules which predicts the division site and the phragmoplast which controls cell-plate deposition), suggest that plant nuclei have an inherent ability to establish a domain of cytoplasm via radial microtubule systems and to regulate wall deposition independently of the more complex cytokinetic apparatus of vegetative cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2145
    Keywords: Key words Cytokinesis ; Microtubules ; Microsporogenesis ; Orchids ; Phragmoplast ; Pollen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Microsporocytes of the slipper orchid Cypripedium californicum A. Gray divide simultaneously after second meiosis. The organization and apportionment of the cytoplasm throughout meiosis are functions of nuclear-based radial microtubule systems (RMSs) that define domains of cytoplasm – a single sporocyte domain before meiosis, dyad domains within the undivided cytoplasm after first meiosis, and four spore domains after second meiosis. Organelles migrate to the interface of dyad domains in the undivided cytoplasm after first meiotic division, and second meiotic division takes place simultaneously on both sides of the equatorial organelle band. Microtubules emanating from the telophase II nuclei interact to form columnar arrrays that interconnect all four nuclei, non-sister as well as sister. Cell plates are initiated in these columns of microtubules and expand centrifugally along the interface of opposing RMSs, coalescing in the center of the sporocyte and joining with the original sporocyte wall at the periphery to form the tetrad of microspores. Organelles are distributed into the spore domains in conjunction with RMSs. These data, demonstrating that cytokinesis in microsporogenesis can occur in the absence of both components of the typical cytokinetic apparatus (the preprophase band of microtubules which predicts the division site and the phragmoplast which controls cell-plate deposition), suggest that plant nuclei have an inherent ability to establish a domain of cytoplasm via radial microtubule systems and to regulate wall deposition independently of the more complex cytokinetic apparatus of vegetative cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 203 (1998), S. 168-174 
    ISSN: 1615-6102
    Keywords: Confocal laser scanning microscopy ; Cytoplasmic domains ; Meiosis ; Microtubules ; Organelle band ; Polarity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Establishment of division polarity and meiotic spindle organization in the lady's slipper orchidCypripedium californicum A. Gray was studied by immunocytochemistry, confocal and transmission electron microscopy. Prior to organization of the spindle for meiosis I, the cytoplasmic domains of the future dyad and spindle polarity are marked by: (1) constriction of the prophase nucleus into an hourglass shape; (2) reorganization of nuclear-based radial microtubules into two arrays that intersect at the constriction; and (3) redistribution of organelles into a ring at the boundary of the newly defined dyad domains. It is not certain whether the opposing microtubule arrays contribute directly to the anastral spindle which is organized in the perinuclear areas of the two hemispheres. By late prophase each half-spindle consists of a spline-like structure from which depart the kinetochore fibers. This peculiar spindle closely resembles the spline-like spindle of generative-cell mitosis in certain plants where the spindle is distorted by physical constraints of the slender pollen tube. In the microsporocyte, the elongate spindle of late prophase/metaphase is curved within the cell so that the poles are not actually opposite each other and chromosomes do not form a plate at the equator. By late telophase the poles of the shortened halfspindles lie opposite each other. Plasticity of the physically constrained plant spindle appears to be due to its construction from multiple units terminating in minipoles. Cytokinesis does not follow the first meiosis. However, the dyad domains are clearly defined by radial microtubules emanating from the two daughter nuclei and the domains themselves are separated by a disc-like band of organelles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1615-6102
    Keywords: Microtubules ; Mitosis ; Plastids ; Preprophase Band ; Isoetes ; Selaginella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ultrastructural observations on monoplastidic root tip cells ofIsoetes andSelaginella demonstrate two important phenomena associated with preprophasic preparation for mitotic cell division, 1. the preprophase band and 2. precise orientation of the dividing plastid relative to the preprophase band. Both of these phenomena accurately predict the future plane of cell division. The plastid divides in a plane parallel to the spindle and each cell inherits a single plastid which caps the telophase nucleus. When succesive transverse divisions occur, the plastid migrates prior to prophase from a position near an old transverse wall to a lateral position in the cell. The plastid is oriented with its median constriction precisely intersected by the plane of the preprophase band. When a longitudinal division follows a transverse division, the plastid remains in its position adjacent to an old transverse wall where it is bisected by the plane of the longitudinally oriented preprophase band microtubules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 124 (1985), S. 175-183 
    ISSN: 1615-6102
    Keywords: Division polarity ; Hornworts ; Microtubules ; Mitosis ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Preprophase in the monoplastidic mitotic cells ofPhaeoceros andNotothylas is characterized by the establishment of a division site in the absence of a typical preprophase band. The future cytokinetic plane is predicted by plastid orientation and development of an elaborate preprophasic microtubule system perpendicular to the division plane. Division of the single plastid is initiated early in preprophase and the constricting plastid migrates to a position perpendicular to the future plane of division. Plastid orientation assures that division of the plastid by mid-constriction will result in distribution of a plastid to each daughter cell. Microtubules parallel the long axis of the plastid and are most numerous adjacent to the nucleus which becomes elongated in the future spindle axis. We conclude that the division site is a fundamental component of the cytokinetic apparatus involved in the determination of cleavage plane prior to nuclear division.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 116 (1983), S. 115-124 
    ISSN: 1615-6102
    Keywords: Microtubules ; Moss ; MTOC ; Sporogenesis ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microtubule systems appear sequentially at the distal and proximal poles of tetrad members during mid-sporogenesis in the mossTetraphis pellucida Hedw. The distal microtubule system emanates from a microtubule organizing center (MTOC) located between the single plastid and the nucleus. The distal MTOC and associated microtubules, which appear immediately after cytokinesis, are ephemeral and do not appear to be associated with the deposition of exine occuring at the same time. The proximal microtubule system, which appears slightly later than the distal system, is a more stable component of mid-sporogenesis. The proximal MTOC is an irregularly lobed, patelliform aggregation of electron-dense granules located beneath the plasma membrane at the proximal spore pole. Several bundles of microtubules radiate from the proximal MTOC and traverse the cell, enclosing the nucleus in an cone of microtubules. The proximal microtubule system is thought to function in aperture development and organelle migration. The relatively large nucleus migrates a short distance in the small spore early in the tetrad stage and maintains its acentric position at the proximal pole throughout later stages of sporogenesis. The plastid migrates later in the tetrad stage from its meiotic position parallel to the distal surface to a position perpendicular to the distal surface with one tip in close proximity to the proximal MTOC. The proximal microtubule system reaches its maximum development by the end of the tetrad stage and all micrographic evidence of it is lost in the maturation stages of late sporogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 106 (1981), S. 273-287 
    ISSN: 1615-6102
    Keywords: Microtubules ; Polarity ; Spore development ; Trematodon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Young spores of the mossTrematodon longicollis Mx. are highly polar. Immediately after meiotic cytokinesis an extensive system of microtubules associated with the single plastid develops under the entire distal face. Following exine initiation on the distal surface a microtubule system is elaborated at the site of aperture development on the proximal surface. Both plastid and nucleus move from distal to proximal pole and are attached to microtubules of the proximal system. Microtubules underlie the plasma membrane as it withdraws from the exine in the initiation of both the surrounding annulus and central aperture pore. The central pore enlarges to form a bowl-shaped concavity in which a fibrillar plug develops basipetally. The annulus expands into a fibrillar-filled protrusion surrounding the central pore. The mature aperture consists of a central pore plug covered by a thin roof of exine and separated from the surrounding annulus by exine lamellae. The aperture of the mature spore is obscured by development of the ornate exine and is not a prominent feature of the mature spore surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 148 (1989), S. 26-32 
    ISSN: 1615-6102
    Keywords: Cytokinesis ; Cytoplasmic domains ; Meiosis ; Microtubules ; Minispindles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Changes in the microtubular cytoskeleton during meiosis and cytokinesis in hybrid moth orchids were studied by indirect immunofluorescence. Lagging chromosomes not incorporated into telophase nuclei after first meiotic division behave as small extra nuclei. Events in the microtubular cycle associated with these micronuclei are similar to and synchronous with those of the principal nuclei. During second meiotic division the micronuclei trigger formation of minispindles which are variously oriented with respect to the two principal spindles. After meiosis, radial systems of microtubules measure cytoplasmic domains around each nucleus in the coenocyte. Cleavage planes are established in regions where opposing radial arrays interact and the cytoplasm cleaved around micronuclei is proportionately smaller than that around the four principal nuclei. These observations clearly demonstrate that nuclei in plant cells are of fundamental importance in microtubule organization and provide strong evidence in support of our recently advanced hypothesis that division planes in simultaneous cytokinesis following meiosis are determined by establishment of cytoplasmic domains via radial systems of nuclear-based microtubules rather than by division sites established before nuclear division.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...