ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-05
    Description: The Sir2 family of enzymes or sirtuins are known as nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and have been implicated in the regulation of transcription, genome stability, metabolism and lifespan. However, four of the seven mammalian sirtuins have very weak deacetylase activity in vitro. Here we show that human SIRT6 efficiently removes long-chain fatty acyl groups, such as myristoyl, from lysine residues. The crystal structure of SIRT6 reveals a large hydrophobic pocket that can accommodate long-chain fatty acyl groups. We demonstrate further that SIRT6 promotes the secretion of tumour necrosis factor-alpha (TNF-alpha) by removing the fatty acyl modification on K19 and K20 of TNF-alpha. Protein lysine fatty acylation has been known to occur in mammalian cells, but the function and regulatory mechanisms of this modification were unknown. Our data indicate that protein lysine fatty acylation is a novel mechanism that regulates protein secretion. The discovery of SIRT6 as an enzyme that controls protein lysine fatty acylation provides new opportunities to investigate the physiological function of a protein post-translational modification that has been little studied until now.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635073/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635073/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Hong -- Khan, Saba -- Wang, Yi -- Charron, Guillaume -- He, Bin -- Sebastian, Carlos -- Du, Jintang -- Kim, Ray -- Ge, Eva -- Mostoslavsky, Raul -- Hang, Howard C -- Hao, Quan -- Lin, Hening -- R01 CA175727/CA/NCI NIH HHS/ -- R01 DK088190/DK/NIDDK NIH HHS/ -- R01 GM086703/GM/NIGMS NIH HHS/ -- R01 GM087544/GM/NIGMS NIH HHS/ -- R01 GM093072/GM/NIGMS NIH HHS/ -- R01GM086703/GM/NIGMS NIH HHS/ -- R01GM087544/GM/NIGMS NIH HHS/ -- R01GM093072/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Apr 4;496(7443):110-3. doi: 10.1038/nature12038.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552949" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Binding Sites ; Crystallography, X-Ray ; Fatty Acids/*chemistry/*metabolism ; Humans ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Lysine/*analogs & derivatives/chemistry/*metabolism ; Protein Processing, Post-Translational ; Sirtuins/chemistry/*metabolism ; Tumor Necrosis Factor-alpha/chemistry/metabolism/*secretion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 691-700 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Transport of small molecules in heterogeneous materials can be an important factor in many engineering and biological applications. This study focuses on the diffusion of cellular nutrients in an immobilized cell system. A Monte Carlo simulation technique is used to describe the diffusion of small molecules in a variety of simulated cellular structures. Diffusivity predictions are in close agreement with experimental values as well as with theoretical bounds reported in the literature. It is revealed that effective diffusivities are highly dependent on the diffusivities of the species in the various phases and on the volume fraction of cells. The spatial arrangement of the cells, however, has no apparent effect on the predicted diffusivity for the range of conditions investigated.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...