ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    International Journal of Non-Linear Mechanics 25 (1990), S. 199-209 
    ISSN: 0020-7462
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of environmental contamination and toxicology 47 (1991), S. 251-260 
    ISSN: 1432-0800
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Meccanica 35 (2000), S. 89-109 
    ISSN: 1572-9648
    Keywords: Milling process ; Chatter ; Stability ; Bifurcation ; Machining dynamics ; Nonlinear dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A unified mechanics based model with multiple degrees of freedom is developed and numerically simulated to study workpiece-tool interactions during milling of ductile workpieces with helical tools. A refined orthogonal cutting model is used at each section of the tool, and the milling forces are determined by using a spatial integration scheme along the axis of the tool. Both regenerative and loss of contact effects are considered in determining the cutting forces, which makes the model well suited for a wide range of milling operations. The model also allows for partial engagement of a tool with a workpiece, which is an important feature needed for milling operations with helical tools. Time domain simulations are carried out by using the developed model to predict the stability boundaries in the space of the tool spindle speed and the axial depth of cut. Poincaré sections are used to determine loss of stability from period-one motions to other motions such as two-period quasiperiodic motions, as a control parameter is varied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 1 (1990), S. 39-61 
    ISSN: 1573-269X
    Keywords: structural dynamics ; internal resonance ; modulation equations ; Hopf bifurcations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study the planar dynamic response of a flexible L-shaped beam-mass structure with a two-to-one internal resonance to a primary resonance. The structure is subjected to low excitation (mili g) levels and the resulting nonlinear motions are examined. The Lagrangian for weakly nonlinear motions of the undamped structure is formulated and time averaged over the period of the primary oscillation, leading to an autonomous system of equations governing the amplitudes and phases of the modes involved in the internal resonance. Later, modal damping is assumed and modal-damping coefficients, determined from experiments, are included in the analytical model. The locations of the saddle-node and Hopf bifurcations predicted by the analysis are in good agreement, respectively, with the jumps and transitions from periodic to quasi-periodic motions observed in the experiments. The current study is relevant to the dynamics and modeling of other structural systems as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 2 (1991), S. 77-117 
    ISSN: 1573-269X
    Keywords: Internal resonances ; bifurcations ; quasiperiodic motions ; chaos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We present a collection of experimental results on the influence of modal interactions (i.e., internal or autoparametric resonances) on the nonlinear response of flexible metallic and composite structures subjected to a range of resonant excitations. The experimental results are provided in the form of frequency spectra, Poincaré sections, pseudo-phase planes, dimension calculations, and response curves. Experimental observations of transitions from periodic to chaotically modulated motions are also presented. We also discuss relevant analytical results. The current study is also relevant to other internally resonant structural systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 3 (1992), S. 19-39 
    ISSN: 1573-269X
    Keywords: Hopf bifurcation ; multiple scales ; limit cycles ; internal resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study motions near a Hopf bifurcation of a representative nonconservative four-dimensional autonomous system with quadratic nonlinearities. Special cases of the four-dimensional system represent the envelope equations that govern the amplitudes and phases of the modes of an internally resonant structure subjected to resonant excitations. Using the method of multiple scales, we reduce the Hopf bifurcation problem to two differential equations for the amplitude and phase of the bifurcating cyclic solutions. Constant solutions of these equations provide asymptotic expansions for the frequency and amplitude of the bifurcating limit cycle. The stability of the constant solutions determines the nature of the bifurcation (i.e., subcritical or supercritical). For different choices of the control parameter, the range of validity of the analytical approximation is ascertained using numerical simulations. The perturbation analysis and discussions are also pertinent to other autonomous systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 11 (1996), S. 17-36 
    ISSN: 1573-269X
    Keywords: Widely separated natural frequencies ; energy transfer ; internal resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract An analytical and experimental investigation into the response of a nonlinear continuous system with widely separated natural frequencies is presented. The system investigated is a thin, slightly curved, isotropic, flexible cantilever beam mounted vertically. In the experiments, for certain vertical harmonic base excitations, we observed that the response consisted of the first, third, and fourth modes. In these cases, the modulation frequency of the amplitudes and phases of the third and fourth modes was equal to the response frequency of the first mode. Subsequently, we developed an analytical model to explain the interactions between the widely separated modes observed in the experiments. We used a three-mode Galerkin projection of the partial-differential equation governing a thin, isotropic, inextensional beam and obtained a sixth-order nonautonomous system of equations by using an unconventional coordinate transformation. In the analytical model, we used experimentally determined damping coefficients. From this nonautonomous system, we obtained a first approximation of the response by using the method of averaging. The analytically predicted responses and bifurcation diagrams show good qualitative agreement with the experimental observations. The current study brings to light a new type of nonlinear motion not reported before in the literature and should be of relevance to many structural and mechanical systems. In this motion, a static response of a low-frequency mode interacts with the dynamic response of two high-frequency modes. This motion loses stability, resulting in oscillations of the low-frequency mode accompanied by a modulation of the amplitudes and phases of the high-frequency modes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 22 (2000), S. 375-392 
    ISSN: 1573-269X
    Keywords: milling chatter ; impact ; tool-workpiece interactions ; dimension calculation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The development of reliable high-speed spindles and motioncontrol systems has led to an increase in the industrial use ofhigh-speed milling. One of the primary applications of this newtechnology is the manufacture of thin-walled aluminum components foraircraft. The flexibility of the tools and workpieces, the high spindlefrequencies, and the inherent impact nonlinearities in the millingprocess can lead to complicated dynamic tool-workpieceinteractions. An experiment was constructed to study the vibrations ofa thin-walled part during milling. Time series, power spectra,autocorrelations, auto-bispectra, and phase portraits were examined.From this data, it is inferred that stiffness and damping nonlinearitiesdue to the intermittent cutting action have a pronounced effect on thedynamics of the workpiece. Delay space reconstructions and pointwisedimension calculations show that the associated motions arecharacterized by a fractal geometry. The auto-bispectra suggestquadratic phase coupling among the spectral peaks associated with thecutter frequency. A mechanics-based model with impact-nonlinearities wasdeveloped to explain the observed results. The predicted results agreewell with the experimental observations. The model predictions indicatethat aperiodic motions are possible over a large range ofcontrol-parameter values. These analytical and experimental results haveimplications for the prediction and control of vibrations in milling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 6 (1994), S. 101-124 
    ISSN: 1573-269X
    Keywords: Melnikov criterion ; Duffing equation ; ship dynamics ; damping models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In the framework of a general roll-damping model, we study the influence of different damping models on the nonlinear roll dynamics of ships through a detailed Melnikov analysis. We introduce the concept of the Melnikov equivalent damping and use phase-plane concepts to obtain simple expressions for what we call the Melnikov damping coefficients. We also study the sensitivity of these coefficients to parameter variations. As an application, we consider the equivalence of the linear-plus-cubic and linear-plus-quadratic damping models, and we derive a condition under which the two models yields the same Melnikov predictions. The free- and forced-oscillation behaviors of the models satisfying this condition are also compared.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-13
    Description: [1]  In this paper, we present response of equatorial and low latitude ionosphere to an intense solar flare of class X7/2B that peaked at 08:05 UT on 09 August 2011 in the solar cycle 24. Global Positioning System (GPS) Total Electron Content (TEC) observations in the sunlit hemisphere show enhancement of ~3 TEC units (TECu) while geomagnetic H component observations indicate sudden decrease and increase in their strength at equatorial and low latitude stations respectively at several stations in the sunlit hemisphere. In addition, Equatorial Electrojet (EEJ) strength over Indian region reveals commencement of Counter Electrojet (CEJ). Simultaneous Canadian Advanced Digital Ionosonde (CADI) observations at Tirunelveli, an equatorial station in India show the disappearance of ionogram echoes during the flare event indicating absorption of radio signals in the D region. Strong equatorial blanketing type Es layer was observed in the ionogram records at Tirunelveli prior to the occurrence of the solar flare that continued for several hours though it became weak/absent during the flare event. Ionogram records on the control day show regular F layer movement without any blanketing type Es layer. Very low frequency (VLF) observations at Allahabad, an Indian low latitude station, show enhanced VLF amplitude signal during the same time revealing the sudden enhancement of D-region ionization. Using the observations presented here, an attempt has been made to study the impact of the solar flares on the electrodynamics of the equatorial and low latitude ionosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...