ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Chalcone synthase ; Gene expression (temporal and spatial pattern) ; Light and gene expression ; Phytochrome (labile, stable) ; Sinapis (chalcone-synthase regulation)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two different chalcone synthase (CHS) transcripts show similar expression characteristics under different light regimes in cotyledons of mustard (Sinapis alba L.). Etiolated seedlings show an increase in dark-expression 36–42 h after sowing. Under continuous red or far-red irradiation both CHS transcripts start to accumulate to levels above those of the dark control at 24–27 h after sowing. This time point can therefore be considered as the starting (or competence) point for phytochrome control of CHS. Continuous far-red irradiation stimulates transcript accumulation more than red light, indicating the involvement of a high-irradiance response (HIR). Irradiation of etiolated seedlings with 5 min long-wavelength far-red light (RG9) at 6–21 h after sowing decreases CHS-mRNA levels below those of the dark control. It is concluded that CHS dark-expression in etiolated seedlings is controlled by a pool of stabletype phytochrome which is derived from seed tissue. By contrast, an RG9-light pulse given to etiolated seedlings 30 h after sowing causes accumulation of CHS-mRNA above the dark-control level. This response and the HIR are attributed to the action of labile phytochrome for which the seedling becomes competent at the starting point 24–27 h after sowing. The different starting points for CHS-mRNA expression in darkness and in light (36 h and 24 h, respectively, after sowing) also indicate that the tested CHS genes in mustard are under the photocontrol of two distinct phytochrome pools. Northern analysis shows that both CHS-mRNAs are expressed in primary leaves, epicotyls and young flower buds. In-situ hybridization with gene-specific CHS probes reveals similar expression patterns for both transcripts in cotyledons of seedlings grown under 42 h continuous far-red light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Chalcone synthase ; Footprinting in vivo ; Gene expression (transient) ; Light regulation (UV-B photoreceptor, blue-light photoreceptor) ; Petroselinum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the chalcone synthase (chs) promoter from parsley [Petroselinum crispum Miller (A.W. Hill)] for the existence of separate promoter elements responsible for transcriptional activation of the chs gene by UV-B and by blue light. A combination of in-vivo footprinting in parsley cells and light-induced transient expression assays with different chs promoter constructs in parsley protoplasts was used. Dark controls and bluelight-irradiated cells gave identical in-vivo footprints on the chs promoter. Pre-irradiation with blue light prior to a UV-B-light pulse is known to cause a shift in the timing of UV-B-light-induced increase in chs transcription rates. This shift was also manifested on the DNA template, since UV-B-light-induced in-vivo footprints in cells pretreated with blue light were detected earlier than in cells which had been irradiated with a UV-B-light pulse only. Although there was a clear shift in the timing of footprint appearance, the patterns of footprinting did not change. Light-induced transient-expression assays revealed that the shortest tested chs promoter which retained any light responsiveness, was sufficient for mediating both induction by UV light and the blue-light-mediated kinetic shift. These findings argue against a spatial separation of UV-B- and blue-light-responsive elements on the chs promoter. We interpret these data by postulating that the signal transduction pathways originating from the excitation of UV-B- and blue-light receptors merge at the chs promoter, or somewhere between light perception and protein-DNA interaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...